MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-supp Structured version   Visualization version   GIF version

Definition df-supp 8202
Description: Define the support of a function against a "zero" value. According to Wikipedia ("Support (mathematics)", 31-Mar-2019, https://en.wikipedia.org/wiki/Support_(mathematics)) "In mathematics, the support of a real-valued function f is the subset of the domain containing those elements which are not mapped to zero." and "The notion of support also extends in a natural way to functions taking values in more general sets than R [the real numbers] and to other objects." The following definition allows for such extensions, being applicable for any sets (which usually are functions) and any element (even not necessarily from the range of the function) regarded as "zero". (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.)
Assertion
Ref Expression
df-supp supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
Distinct variable group:   𝑥,𝑖,𝑧

Detailed syntax breakdown of Definition df-supp
StepHypRef Expression
1 csupp 8201 . 2 class supp
2 vx . . 3 setvar 𝑥
3 vz . . 3 setvar 𝑧
4 cvv 3488 . . 3 class V
52cv 1536 . . . . . 6 class 𝑥
6 vi . . . . . . . 8 setvar 𝑖
76cv 1536 . . . . . . 7 class 𝑖
87csn 4648 . . . . . 6 class {𝑖}
95, 8cima 5703 . . . . 5 class (𝑥 “ {𝑖})
103cv 1536 . . . . . 6 class 𝑧
1110csn 4648 . . . . 5 class {𝑧}
129, 11wne 2946 . . . 4 wff (𝑥 “ {𝑖}) ≠ {𝑧}
135cdm 5700 . . . 4 class dom 𝑥
1412, 6, 13crab 3443 . . 3 class {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}
152, 3, 4, 4, 14cmpo 7450 . 2 class (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
161, 15wceq 1537 1 wff supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
Colors of variables: wff setvar class
This definition is referenced by:  suppval  8203  supp0prc  8204
  Copyright terms: Public domain W3C validator