MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-supp Structured version   Visualization version   GIF version

Definition df-supp 7987
Description: Define the support of a function against a "zero" value. According to Wikipedia ("Support (mathematics)", 31-Mar-2019, https://en.wikipedia.org/wiki/Support_(mathematics)) "In mathematics, the support of a real-valued function f is the subset of the domain containing those elements which are not mapped to zero." and "The notion of support also extends in a natural way to functions taking values in more general sets than R [the real numbers] and to other objects." The following definition allows for such extensions, being applicable for any sets (which usually are functions) and any element (even not necessarily from the range of the function) regarded as "zero". (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.)
Assertion
Ref Expression
df-supp supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
Distinct variable group:   𝑥,𝑖,𝑧

Detailed syntax breakdown of Definition df-supp
StepHypRef Expression
1 csupp 7986 . 2 class supp
2 vx . . 3 setvar 𝑥
3 vz . . 3 setvar 𝑧
4 cvv 3433 . . 3 class V
52cv 1538 . . . . . 6 class 𝑥
6 vi . . . . . . . 8 setvar 𝑖
76cv 1538 . . . . . . 7 class 𝑖
87csn 4562 . . . . . 6 class {𝑖}
95, 8cima 5593 . . . . 5 class (𝑥 “ {𝑖})
103cv 1538 . . . . . 6 class 𝑧
1110csn 4562 . . . . 5 class {𝑧}
129, 11wne 2944 . . . 4 wff (𝑥 “ {𝑖}) ≠ {𝑧}
135cdm 5590 . . . 4 class dom 𝑥
1412, 6, 13crab 3069 . . 3 class {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}
152, 3, 4, 4, 14cmpo 7286 . 2 class (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
161, 15wceq 1539 1 wff supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
Colors of variables: wff setvar class
This definition is referenced by:  suppval  7988  supp0prc  7989
  Copyright terms: Public domain W3C validator