Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supp0prc | Structured version Visualization version GIF version |
Description: The support of a class is empty if either the class or the "zero" is a proper class. (Contributed by AV, 28-May-2019.) |
Ref | Expression |
---|---|
supp0prc | ⊢ (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-supp 8027 | . 2 ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) | |
2 | 1 | mpondm0 7552 | 1 ⊢ (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 {crab 3404 Vcvv 3441 ∅c0 4267 {csn 4571 dom cdm 5608 “ cima 5611 (class class class)co 7317 supp csupp 8026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-xp 5614 df-dm 5618 df-iota 6418 df-fv 6474 df-ov 7320 df-oprab 7321 df-mpo 7322 df-supp 8027 |
This theorem is referenced by: suppssdm 8042 suppun 8049 extmptsuppeq 8053 funsssuppss 8055 fczsupp0 8058 suppss 8059 suppssOLD 8060 suppssov1 8063 suppss2 8065 suppssfv 8067 suppco 8071 fsuppun 9224 |
Copyright terms: Public domain | W3C validator |