MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supp0prc Structured version   Visualization version   GIF version

Theorem supp0prc 7579
Description: The support of a class is empty if either the class or the "zero" is a proper class. . (Contributed by AV, 28-May-2019.)
Assertion
Ref Expression
supp0prc (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅)

Proof of Theorem supp0prc
Dummy variables 𝑥 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-supp 7577 . 2 supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
21mpt2ndm0 7152 1 (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  {crab 3094  Vcvv 3398  c0 4141  {csn 4398  dom cdm 5355  cima 5358  (class class class)co 6922   supp csupp 7576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-xp 5361  df-dm 5365  df-iota 6099  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-supp 7577
This theorem is referenced by:  suppssdm  7589  suppun  7596  extmptsuppeq  7600  funsssuppss  7603  fczsupp0  7606  suppss  7607  suppssov1  7609  suppss2  7611  suppssfv  7613  supp0cosupp0  7616  imacosupp  7617  fsuppun  8582
  Copyright terms: Public domain W3C validator