![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supp0prc | Structured version Visualization version GIF version |
Description: The support of a class is empty if either the class or the "zero" is a proper class. . (Contributed by AV, 28-May-2019.) |
Ref | Expression |
---|---|
supp0prc | ⊢ (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-supp 7577 | . 2 ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) | |
2 | 1 | mpt2ndm0 7152 | 1 ⊢ (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 {crab 3094 Vcvv 3398 ∅c0 4141 {csn 4398 dom cdm 5355 “ cima 5358 (class class class)co 6922 supp csupp 7576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-xp 5361 df-dm 5365 df-iota 6099 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-supp 7577 |
This theorem is referenced by: suppssdm 7589 suppun 7596 extmptsuppeq 7600 funsssuppss 7603 fczsupp0 7606 suppss 7607 suppssov1 7609 suppss2 7611 suppssfv 7613 supp0cosupp0 7616 imacosupp 7617 fsuppun 8582 |
Copyright terms: Public domain | W3C validator |