| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supp0prc | Structured version Visualization version GIF version | ||
| Description: The support of a class is empty if either the class or the "zero" is a proper class. (Contributed by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| supp0prc | ⊢ (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-supp 8160 | . 2 ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) | |
| 2 | 1 | mpondm0 7647 | 1 ⊢ (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 {crab 3415 Vcvv 3459 ∅c0 4308 {csn 4601 dom cdm 5654 “ cima 5657 (class class class)co 7405 supp csupp 8159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-dm 5664 df-iota 6484 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-supp 8160 |
| This theorem is referenced by: suppssdm 8176 suppun 8183 extmptsuppeq 8187 funsssuppss 8189 fczsupp0 8192 suppss 8193 suppssov1 8196 suppssov2 8197 suppss2 8199 suppssfv 8201 suppco 8205 fsuppun 9399 |
| Copyright terms: Public domain | W3C validator |