| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supp0prc | Structured version Visualization version GIF version | ||
| Description: The support of a class is empty if either the class or the "zero" is a proper class. (Contributed by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| supp0prc | ⊢ (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-supp 8086 | . 2 ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) | |
| 2 | 1 | mpondm0 7581 | 1 ⊢ (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ∅c0 4278 {csn 4571 dom cdm 5611 “ cima 5614 (class class class)co 7341 supp csupp 8085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-dm 5621 df-iota 6432 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-supp 8086 |
| This theorem is referenced by: suppssdm 8102 suppun 8109 extmptsuppeq 8113 funsssuppss 8115 fczsupp0 8118 suppss 8119 suppssov1 8122 suppssov2 8123 suppss2 8125 suppssfv 8127 suppco 8131 fsuppun 9266 |
| Copyright terms: Public domain | W3C validator |