MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supp0prc Structured version   Visualization version   GIF version

Theorem supp0prc 8188
Description: The support of a class is empty if either the class or the "zero" is a proper class. (Contributed by AV, 28-May-2019.)
Assertion
Ref Expression
supp0prc (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅)

Proof of Theorem supp0prc
Dummy variables 𝑥 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-supp 8186 . 2 supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
21mpondm0 7673 1 (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  Vcvv 3480  c0 4333  {csn 4626  dom cdm 5685  cima 5688  (class class class)co 7431   supp csupp 8185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-dm 5695  df-iota 6514  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8186
This theorem is referenced by:  suppssdm  8202  suppun  8209  extmptsuppeq  8213  funsssuppss  8215  fczsupp0  8218  suppss  8219  suppssov1  8222  suppssov2  8223  suppss2  8225  suppssfv  8227  suppco  8231  fsuppun  9427
  Copyright terms: Public domain W3C validator