Colors of
variables: wff
setvar class |
Syntax hints: ¬ wn 3 → wi 4
∧ wa 395 = wceq 1540
∈ wcel 2105 ≠
wne 2939 {crab 3431
Vcvv 3473 ∅c0 4322
{csn 4628 dom cdm 5676
“ cima 5679 (class class class)co 7412
supp csupp 8150 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912
ax-6 1970 ax-7 2010 ax-8 2107
ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-dm 5686 df-iota 6495 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-supp 8151 |
This theorem is referenced by: suppssdm
8166 suppun
8173 extmptsuppeq
8177 funsssuppss
8179 fczsupp0
8182 suppss
8183 suppssOLD
8184 suppssov1
8187 suppss2
8189 suppssfv
8191 suppco
8195 fsuppun
9386 |