| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppval | Structured version Visualization version GIF version | ||
| Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| suppval | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-supp 8186 | . . 3 ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})) |
| 3 | dmeq 5914 | . . . . 5 ⊢ (𝑥 = 𝑋 → dom 𝑥 = dom 𝑋) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → dom 𝑥 = dom 𝑋) |
| 5 | imaeq1 6073 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖})) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖})) |
| 7 | sneq 4636 | . . . . . 6 ⊢ (𝑧 = 𝑍 → {𝑧} = {𝑍}) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → {𝑧} = {𝑍}) |
| 9 | 6, 8 | neeq12d 3002 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → ((𝑥 “ {𝑖}) ≠ {𝑧} ↔ (𝑋 “ {𝑖}) ≠ {𝑍})) |
| 10 | 4, 9 | rabeqbidv 3455 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
| 11 | 10 | adantl 481 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑥 = 𝑋 ∧ 𝑧 = 𝑍)) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
| 12 | elex 3501 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 13 | 12 | adantr 480 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 ∈ V) |
| 14 | elex 3501 | . . 3 ⊢ (𝑍 ∈ 𝑊 → 𝑍 ∈ V) | |
| 15 | 14 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑍 ∈ V) |
| 16 | dmexg 7923 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → dom 𝑋 ∈ V) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝑋 ∈ V) |
| 18 | rabexg 5337 | . . 3 ⊢ (dom 𝑋 ∈ V → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V) |
| 20 | 2, 11, 13, 15, 19 | ovmpod 7585 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {crab 3436 Vcvv 3480 {csn 4626 dom cdm 5685 “ cima 5688 (class class class)co 7431 ∈ cmpo 7433 supp csupp 8185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-supp 8186 |
| This theorem is referenced by: suppvalbr 8189 supp0 8190 suppval1 8191 suppssdm 8202 suppsnop 8203 ressuppss 8208 ressuppssdif 8210 |
| Copyright terms: Public domain | W3C validator |