MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppval Structured version   Visualization version   GIF version

Theorem suppval 8098
Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.)
Assertion
Ref Expression
suppval ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
Distinct variable groups:   𝑖,𝑋   𝑖,𝑍
Allowed substitution hints:   𝑉(𝑖)   𝑊(𝑖)

Proof of Theorem suppval
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-supp 8097 . . 3 supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
21a1i 11 . 2 ((𝑋𝑉𝑍𝑊) → supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}))
3 dmeq 5847 . . . . 5 (𝑥 = 𝑋 → dom 𝑥 = dom 𝑋)
43adantr 480 . . . 4 ((𝑥 = 𝑋𝑧 = 𝑍) → dom 𝑥 = dom 𝑋)
5 imaeq1 6008 . . . . . 6 (𝑥 = 𝑋 → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖}))
65adantr 480 . . . . 5 ((𝑥 = 𝑋𝑧 = 𝑍) → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖}))
7 sneq 4585 . . . . . 6 (𝑧 = 𝑍 → {𝑧} = {𝑍})
87adantl 481 . . . . 5 ((𝑥 = 𝑋𝑧 = 𝑍) → {𝑧} = {𝑍})
96, 8neeq12d 2990 . . . 4 ((𝑥 = 𝑋𝑧 = 𝑍) → ((𝑥 “ {𝑖}) ≠ {𝑧} ↔ (𝑋 “ {𝑖}) ≠ {𝑍}))
104, 9rabeqbidv 3414 . . 3 ((𝑥 = 𝑋𝑧 = 𝑍) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
1110adantl 481 . 2 (((𝑋𝑉𝑍𝑊) ∧ (𝑥 = 𝑋𝑧 = 𝑍)) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
12 elex 3458 . . 3 (𝑋𝑉𝑋 ∈ V)
1312adantr 480 . 2 ((𝑋𝑉𝑍𝑊) → 𝑋 ∈ V)
14 elex 3458 . . 3 (𝑍𝑊𝑍 ∈ V)
1514adantl 481 . 2 ((𝑋𝑉𝑍𝑊) → 𝑍 ∈ V)
16 dmexg 7837 . . . 4 (𝑋𝑉 → dom 𝑋 ∈ V)
1716adantr 480 . . 3 ((𝑋𝑉𝑍𝑊) → dom 𝑋 ∈ V)
18 rabexg 5277 . . 3 (dom 𝑋 ∈ V → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V)
1917, 18syl 17 . 2 ((𝑋𝑉𝑍𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V)
202, 11, 13, 15, 19ovmpod 7504 1 ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  {crab 3396  Vcvv 3437  {csn 4575  dom cdm 5619  cima 5622  (class class class)co 7352  cmpo 7354   supp csupp 8096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-supp 8097
This theorem is referenced by:  suppvalbr  8100  supp0  8101  suppval1  8102  suppssdm  8113  suppsnop  8114  ressuppss  8119  ressuppssdif  8121
  Copyright terms: Public domain W3C validator