| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppval | Structured version Visualization version GIF version | ||
| Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| suppval | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-supp 8160 | . . 3 ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})) |
| 3 | dmeq 5883 | . . . . 5 ⊢ (𝑥 = 𝑋 → dom 𝑥 = dom 𝑋) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → dom 𝑥 = dom 𝑋) |
| 5 | imaeq1 6042 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖})) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖})) |
| 7 | sneq 4611 | . . . . . 6 ⊢ (𝑧 = 𝑍 → {𝑧} = {𝑍}) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → {𝑧} = {𝑍}) |
| 9 | 6, 8 | neeq12d 2993 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → ((𝑥 “ {𝑖}) ≠ {𝑧} ↔ (𝑋 “ {𝑖}) ≠ {𝑍})) |
| 10 | 4, 9 | rabeqbidv 3434 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
| 11 | 10 | adantl 481 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑥 = 𝑋 ∧ 𝑧 = 𝑍)) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
| 12 | elex 3480 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 13 | 12 | adantr 480 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 ∈ V) |
| 14 | elex 3480 | . . 3 ⊢ (𝑍 ∈ 𝑊 → 𝑍 ∈ V) | |
| 15 | 14 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑍 ∈ V) |
| 16 | dmexg 7897 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → dom 𝑋 ∈ V) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝑋 ∈ V) |
| 18 | rabexg 5307 | . . 3 ⊢ (dom 𝑋 ∈ V → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V) |
| 20 | 2, 11, 13, 15, 19 | ovmpod 7559 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 {crab 3415 Vcvv 3459 {csn 4601 dom cdm 5654 “ cima 5657 (class class class)co 7405 ∈ cmpo 7407 supp csupp 8159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-supp 8160 |
| This theorem is referenced by: suppvalbr 8163 supp0 8164 suppval1 8165 suppssdm 8176 suppsnop 8177 ressuppss 8182 ressuppssdif 8184 |
| Copyright terms: Public domain | W3C validator |