MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppval Structured version   Visualization version   GIF version

Theorem suppval 8151
Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.)
Assertion
Ref Expression
suppval ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
Distinct variable groups:   𝑖,𝑋   𝑖,𝑍
Allowed substitution hints:   𝑉(𝑖)   𝑊(𝑖)

Proof of Theorem suppval
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-supp 8150 . . 3 supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
21a1i 11 . 2 ((𝑋𝑉𝑍𝑊) → supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}))
3 dmeq 5903 . . . . 5 (𝑥 = 𝑋 → dom 𝑥 = dom 𝑋)
43adantr 480 . . . 4 ((𝑥 = 𝑋𝑧 = 𝑍) → dom 𝑥 = dom 𝑋)
5 imaeq1 6054 . . . . . 6 (𝑥 = 𝑋 → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖}))
65adantr 480 . . . . 5 ((𝑥 = 𝑋𝑧 = 𝑍) → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖}))
7 sneq 4638 . . . . . 6 (𝑧 = 𝑍 → {𝑧} = {𝑍})
87adantl 481 . . . . 5 ((𝑥 = 𝑋𝑧 = 𝑍) → {𝑧} = {𝑍})
96, 8neeq12d 3001 . . . 4 ((𝑥 = 𝑋𝑧 = 𝑍) → ((𝑥 “ {𝑖}) ≠ {𝑧} ↔ (𝑋 “ {𝑖}) ≠ {𝑍}))
104, 9rabeqbidv 3448 . . 3 ((𝑥 = 𝑋𝑧 = 𝑍) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
1110adantl 481 . 2 (((𝑋𝑉𝑍𝑊) ∧ (𝑥 = 𝑋𝑧 = 𝑍)) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
12 elex 3492 . . 3 (𝑋𝑉𝑋 ∈ V)
1312adantr 480 . 2 ((𝑋𝑉𝑍𝑊) → 𝑋 ∈ V)
14 elex 3492 . . 3 (𝑍𝑊𝑍 ∈ V)
1514adantl 481 . 2 ((𝑋𝑉𝑍𝑊) → 𝑍 ∈ V)
16 dmexg 7897 . . . 4 (𝑋𝑉 → dom 𝑋 ∈ V)
1716adantr 480 . . 3 ((𝑋𝑉𝑍𝑊) → dom 𝑋 ∈ V)
18 rabexg 5331 . . 3 (dom 𝑋 ∈ V → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V)
1917, 18syl 17 . 2 ((𝑋𝑉𝑍𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V)
202, 11, 13, 15, 19ovmpod 7563 1 ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  {crab 3431  Vcvv 3473  {csn 4628  dom cdm 5676  cima 5679  (class class class)co 7412  cmpo 7414   supp csupp 8149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-supp 8150
This theorem is referenced by:  suppvalbr  8153  supp0  8154  suppval1  8155  suppssdm  8165  suppsnop  8166  ressuppss  8171  ressuppssdif  8173
  Copyright terms: Public domain W3C validator