Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppval | Structured version Visualization version GIF version |
Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
suppval | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-supp 8048 | . . 3 ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})) |
3 | dmeq 5845 | . . . . 5 ⊢ (𝑥 = 𝑋 → dom 𝑥 = dom 𝑋) | |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → dom 𝑥 = dom 𝑋) |
5 | imaeq1 5994 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖})) | |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖})) |
7 | sneq 4583 | . . . . . 6 ⊢ (𝑧 = 𝑍 → {𝑧} = {𝑍}) | |
8 | 7 | adantl 482 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → {𝑧} = {𝑍}) |
9 | 6, 8 | neeq12d 3002 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → ((𝑥 “ {𝑖}) ≠ {𝑧} ↔ (𝑋 “ {𝑖}) ≠ {𝑍})) |
10 | 4, 9 | rabeqbidv 3420 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
11 | 10 | adantl 482 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑥 = 𝑋 ∧ 𝑧 = 𝑍)) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
12 | elex 3459 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
13 | 12 | adantr 481 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 ∈ V) |
14 | elex 3459 | . . 3 ⊢ (𝑍 ∈ 𝑊 → 𝑍 ∈ V) | |
15 | 14 | adantl 482 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑍 ∈ V) |
16 | dmexg 7818 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → dom 𝑋 ∈ V) | |
17 | 16 | adantr 481 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝑋 ∈ V) |
18 | rabexg 5275 | . . 3 ⊢ (dom 𝑋 ∈ V → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V) | |
19 | 17, 18 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V) |
20 | 2, 11, 13, 15, 19 | ovmpod 7487 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 {crab 3403 Vcvv 3441 {csn 4573 dom cdm 5620 “ cima 5623 (class class class)co 7337 ∈ cmpo 7339 supp csupp 8047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-supp 8048 |
This theorem is referenced by: suppvalbr 8051 supp0 8052 suppval1 8053 suppssdm 8063 suppsnop 8064 ressuppss 8069 ressuppssdif 8071 |
Copyright terms: Public domain | W3C validator |