MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppval Structured version   Visualization version   GIF version

Theorem suppval 8203
Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.)
Assertion
Ref Expression
suppval ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
Distinct variable groups:   𝑖,𝑋   𝑖,𝑍
Allowed substitution hints:   𝑉(𝑖)   𝑊(𝑖)

Proof of Theorem suppval
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-supp 8202 . . 3 supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
21a1i 11 . 2 ((𝑋𝑉𝑍𝑊) → supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}))
3 dmeq 5928 . . . . 5 (𝑥 = 𝑋 → dom 𝑥 = dom 𝑋)
43adantr 480 . . . 4 ((𝑥 = 𝑋𝑧 = 𝑍) → dom 𝑥 = dom 𝑋)
5 imaeq1 6084 . . . . . 6 (𝑥 = 𝑋 → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖}))
65adantr 480 . . . . 5 ((𝑥 = 𝑋𝑧 = 𝑍) → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖}))
7 sneq 4658 . . . . . 6 (𝑧 = 𝑍 → {𝑧} = {𝑍})
87adantl 481 . . . . 5 ((𝑥 = 𝑋𝑧 = 𝑍) → {𝑧} = {𝑍})
96, 8neeq12d 3008 . . . 4 ((𝑥 = 𝑋𝑧 = 𝑍) → ((𝑥 “ {𝑖}) ≠ {𝑧} ↔ (𝑋 “ {𝑖}) ≠ {𝑍}))
104, 9rabeqbidv 3462 . . 3 ((𝑥 = 𝑋𝑧 = 𝑍) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
1110adantl 481 . 2 (((𝑋𝑉𝑍𝑊) ∧ (𝑥 = 𝑋𝑧 = 𝑍)) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
12 elex 3509 . . 3 (𝑋𝑉𝑋 ∈ V)
1312adantr 480 . 2 ((𝑋𝑉𝑍𝑊) → 𝑋 ∈ V)
14 elex 3509 . . 3 (𝑍𝑊𝑍 ∈ V)
1514adantl 481 . 2 ((𝑋𝑉𝑍𝑊) → 𝑍 ∈ V)
16 dmexg 7941 . . . 4 (𝑋𝑉 → dom 𝑋 ∈ V)
1716adantr 480 . . 3 ((𝑋𝑉𝑍𝑊) → dom 𝑋 ∈ V)
18 rabexg 5355 . . 3 (dom 𝑋 ∈ V → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V)
1917, 18syl 17 . 2 ((𝑋𝑉𝑍𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V)
202, 11, 13, 15, 19ovmpod 7602 1 ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  {csn 4648  dom cdm 5700  cima 5703  (class class class)co 7448  cmpo 7450   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  suppvalbr  8205  supp0  8206  suppval1  8207  suppssdm  8218  suppsnop  8219  ressuppss  8224  ressuppssdif  8226
  Copyright terms: Public domain W3C validator