![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppval | Structured version Visualization version GIF version |
Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
suppval | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-supp 8150 | . . 3 ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})) |
3 | dmeq 5903 | . . . . 5 ⊢ (𝑥 = 𝑋 → dom 𝑥 = dom 𝑋) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → dom 𝑥 = dom 𝑋) |
5 | imaeq1 6054 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖})) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖})) |
7 | sneq 4638 | . . . . . 6 ⊢ (𝑧 = 𝑍 → {𝑧} = {𝑍}) | |
8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → {𝑧} = {𝑍}) |
9 | 6, 8 | neeq12d 3001 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → ((𝑥 “ {𝑖}) ≠ {𝑧} ↔ (𝑋 “ {𝑖}) ≠ {𝑍})) |
10 | 4, 9 | rabeqbidv 3448 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
11 | 10 | adantl 481 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑥 = 𝑋 ∧ 𝑧 = 𝑍)) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
12 | elex 3492 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
13 | 12 | adantr 480 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 ∈ V) |
14 | elex 3492 | . . 3 ⊢ (𝑍 ∈ 𝑊 → 𝑍 ∈ V) | |
15 | 14 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑍 ∈ V) |
16 | dmexg 7897 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → dom 𝑋 ∈ V) | |
17 | 16 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝑋 ∈ V) |
18 | rabexg 5331 | . . 3 ⊢ (dom 𝑋 ∈ V → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V) | |
19 | 17, 18 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V) |
20 | 2, 11, 13, 15, 19 | ovmpod 7563 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 {crab 3431 Vcvv 3473 {csn 4628 dom cdm 5676 “ cima 5679 (class class class)co 7412 ∈ cmpo 7414 supp csupp 8149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-supp 8150 |
This theorem is referenced by: suppvalbr 8153 supp0 8154 suppval1 8155 suppssdm 8165 suppsnop 8166 ressuppss 8171 ressuppssdif 8173 |
Copyright terms: Public domain | W3C validator |