HomeHome Metamath Proof Explorer
Theorem List (p. 82 of 489)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30950)
  Hilbert Space Explorer  Hilbert Space Explorer
(30951-32473)
  Users' Mathboxes  Users' Mathboxes
(32474-48899)
 

Theorem List for Metamath Proof Explorer - 8101-8200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcnvoprab 8101* The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof shortened by Thierry Arnoux, 20-Feb-2022.)
(𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))    &   (𝜓𝑎 ∈ (V × V))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
 
Theoremdfxp3 8102* Define the Cartesian product of three classes. Compare df-xp 5706. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
((𝐴 × 𝐵) × 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥𝐴𝑦𝐵𝑧𝐶)}
 
Theoremelopabi 8103* A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
(𝑥 = (1st𝐴) → (𝜑𝜓))    &   (𝑦 = (2nd𝐴) → (𝜓𝜒))       (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒)
 
Theoremeloprabi 8104* A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑥 = (1st ‘(1st𝐴)) → (𝜑𝜓))    &   (𝑦 = (2nd ‘(1st𝐴)) → (𝜓𝜒))    &   (𝑧 = (2nd𝐴) → (𝜒𝜃))       (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → 𝜃)
 
Theoremmpomptsx 8105* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
(𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
 
Theoremmpompts 8106* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.)
(𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
 
Theoremdmmpossx 8107* The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
 
Theoremfmpox 8108* Functionality, domain and codomain of a class given by the maps-to notation, where 𝐵(𝑥) is not constant but depends on 𝑥. (Contributed by NM, 29-Dec-2014.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
 
Theoremfmpo 8109* Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
 
Theoremfnmpo 8110* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
 
Theoremfnmpoi 8111* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V       𝐹 Fn (𝐴 × 𝐵)
 
Theoremdmmpo 8112* Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V       dom 𝐹 = (𝐴 × 𝐵)
 
Theoremovmpoelrn 8113* An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.)
𝑂 = (𝑥𝐴, 𝑦𝐵𝐶)       ((∀𝑥𝐴𝑦𝐵 𝐶𝑀𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) ∈ 𝑀)
 
Theoremdmmpoga 8114* Domain of an operation given by the maps-to notation, closed form of dmmpo 8112. (Contributed by Alexander van der Vekens, 10-Feb-2019.) (Proof shortened by Lammen, 29-May-2024.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
 
Theoremdmmpog 8115* Domain of an operation given by the maps-to notation, closed form of dmmpo 8112. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
 
Theoremmpoexxg 8116* Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
 
Theoremmpoexg 8117* Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝐴𝑅𝐵𝑆) → 𝐹 ∈ V)
 
Theoremmpoexga 8118* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.)
((𝐴𝑉𝐵𝑊) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
 
Theoremmpoexw 8119* Weak version of mpoex 8120 that holds without ax-rep 5303. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐷 ∈ V    &   𝑥𝐴𝑦𝐵 𝐶𝐷       (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
 
Theoremmpoex 8120* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
 
Theoremmptmpoopabbrd 8121* The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, to remove hypotheses; avoid ax-rep 5303. (Revised by SN, 7-Apr-2025.)
(𝜑𝐺𝑊)    &   (𝜑𝑋 ∈ (𝐴𝐺))    &   (𝜑𝑌 ∈ (𝐵𝐺))    &   ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))    &   (𝑔 = 𝐺 → (𝜒𝜏))    &   𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))       (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
 
TheoremmptmpoopabbrdOLD 8122* Obsolete version of mptmpoopabbrd 8121 as of 7-Apr-2025. (Contributed by Alexander van Vekens, 8-Nov-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝜑𝐺𝑊)    &   (𝜑𝑋 ∈ (𝐴𝐺))    &   (𝜑𝑌 ∈ (𝐵𝐺))    &   ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))    &   (𝑔 = 𝐺 → (𝜒𝜏))    &   𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))       (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
 
Theoremmptmpoopabovd 8123* The operation value of a function value of a collection of ordered pairs of related elements. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, to remove hypotheses. (Revised by SN, 13-Dec-2024.)
(𝜑𝐺𝑊)    &   (𝜑𝑋 ∈ (𝐴𝐺))    &   (𝜑𝑌 ∈ (𝐵𝐺))    &   𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝐷𝑔))}))       (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝑓(𝑋(𝐶𝐺)𝑌)𝑓(𝐷𝐺))})
 
TheoremmptmpoopabbrdOLDOLD 8124* Obsolete version of mptmpoopabbrd 8121 as of 13-Dec-2024. (Contributed by Alexander van Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐺𝑊)    &   (𝜑𝑋 ∈ (𝐴𝐺))    &   (𝜑𝑌 ∈ (𝐵𝐺))    &   (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)    &   ((𝜑𝑓(𝐷𝐺)) → 𝜓)    &   ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))    &   (𝑔 = 𝐺 → (𝜒𝜏))    &   𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))       (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
 
TheoremmptmpoopabovdOLD 8125* Obsolete version of mptmpoopabovd 8123 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐺𝑊)    &   (𝜑𝑋 ∈ (𝐴𝐺))    &   (𝜑𝑌 ∈ (𝐵𝐺))    &   (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)    &   ((𝜑𝑓(𝐷𝐺)) → 𝜓)    &   𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝐷𝑔))}))       (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝑓(𝑋(𝐶𝐺)𝑌)𝑓(𝐷𝐺))})
 
Theoremel2mpocsbcl 8126* If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021.)
𝑂 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑠𝐶, 𝑡𝐷𝐸))       (∀𝑥𝐴𝑦𝐵 (𝐶𝑈𝐷𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝑋 / 𝑥𝑌 / 𝑦𝐶𝑇𝑋 / 𝑥𝑌 / 𝑦𝐷))))
 
Theoremel2mpocl 8127* If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021.)
𝑂 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑠𝐶, 𝑡𝐷𝐸))    &   ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐶 = 𝐹𝐷 = 𝐺))       (∀𝑥𝐴𝑦𝐵 (𝐶𝑈𝐷𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋𝐴𝑌𝐵) ∧ (𝑆𝐹𝑇𝐺))))
 
Theoremfnmpoovd 8128* A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
(𝜑𝑀 Fn (𝐴 × 𝐵))    &   ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)    &   ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)    &   ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)       (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
 
Theoremoffval22 8129* The function operation expressed as a mapping, variation of offval2 7734. (Contributed by SO, 15-Jul-2018.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   ((𝜑𝑥𝐴𝑦𝐵) → 𝐶𝑋)    &   ((𝜑𝑥𝐴𝑦𝐵) → 𝐷𝑌)    &   (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))    &   (𝜑𝐺 = (𝑥𝐴, 𝑦𝐵𝐷))       (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑅𝐷)))
 
Theorembrovpreldm 8130 If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.)
(𝐷(𝐵𝐴𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐴)
 
Theorembropopvvv 8131* If a binary relation holds for the result of an operation which is a result of an operation, the involved classes are sets. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Proof shortened by AV, 3-Jan-2021.)
𝑂 = (𝑣 ∈ V, 𝑒 ∈ V ↦ (𝑎𝑣, 𝑏𝑣 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜑}))    &   ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜑𝜓))    &   (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉𝑂𝐸)𝐵) = {⟨𝑓, 𝑝⟩ ∣ 𝜃})       (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))
 
Theorembropfvvvvlem 8132* Lemma for bropfvvvv 8133. (Contributed by AV, 31-Dec-2020.) (Revised by AV, 16-Jan-2021.)
𝑂 = (𝑎𝑈 ↦ (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑}))    &   ((𝐴𝑈𝐵𝑆𝐶𝑇) → (𝐵(𝑂𝐴)𝐶) = {⟨𝑑, 𝑒⟩ ∣ 𝜃})       ((⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑇) ∧ 𝐷(𝐵(𝑂𝐴)𝐶)𝐸) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))
 
Theorembropfvvvv 8133* If a binary relation holds for the result of an operation which is a function value, the involved classes are sets. (Contributed by AV, 31-Dec-2020.) (Revised by AV, 16-Jan-2021.)
𝑂 = (𝑎𝑈 ↦ (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑}))    &   ((𝐴𝑈𝐵𝑆𝐶𝑇) → (𝐵(𝑂𝐴)𝐶) = {⟨𝑑, 𝑒⟩ ∣ 𝜃})    &   (𝑎 = 𝐴𝑉 = 𝑆)    &   (𝑎 = 𝐴𝑊 = 𝑇)    &   (𝑎 = 𝐴 → (𝜑𝜓))       ((𝑆𝑋𝑇𝑌) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
 
Theoremovmptss 8134* If all the values of the mapping are subsets of a class 𝑋, then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝑋 → (𝐸𝐹𝐺) ⊆ 𝑋)
 
Theoremrelmpoopab 8135* Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨𝑧, 𝑤⟩ ∣ 𝜑})       Rel (𝐶𝐹𝐷)
 
Theoremfmpoco 8136* Composition of two functions. Variation of fmptco 7163 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑅𝐶)    &   (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝑅))    &   (𝜑𝐺 = (𝑧𝐶𝑆))    &   (𝑧 = 𝑅𝑆 = 𝑇)       (𝜑 → (𝐺𝐹) = (𝑥𝐴, 𝑦𝐵𝑇))
 
Theoremoprabco 8137* Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
((𝑥𝐴𝑦𝐵) → 𝐶𝐷)    &   𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶))       (𝐻 Fn 𝐷𝐺 = (𝐻𝐹))
 
Theoremoprab2co 8138* Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
((𝑥𝐴𝑦𝐵) → 𝐶𝑅)    &   ((𝑥𝐴𝑦𝐵) → 𝐷𝑆)    &   𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨𝐶, 𝐷⟩)    &   𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷))       (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
 
Theoremdf1st2 8139* An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
 
Theoremdf2nd2 8140* An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
 
Theorem1stconst 8141 The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
(𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)
 
Theorem2ndconst 8142 The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
(𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)
 
Theoremdfmpo 8143* Alternate definition for the maps-to notation df-mpo 7453 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐶 ∈ V       (𝑥𝐴, 𝑦𝐵𝐶) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
 
Theoremmposn 8144* An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019.)
𝐹 = (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶)    &   (𝑥 = 𝐴𝐶 = 𝐷)    &   (𝑦 = 𝐵𝐷 = 𝐸)       ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = {⟨⟨𝐴, 𝐵⟩, 𝐸⟩})
 
Theoremcurry1 8145* Composition with (2nd ↾ ({𝐶} × V)) turns any binary operation 𝐹 with a constant first operand into a function 𝐺 of the second operand only. This transformation is called "currying". (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Dec-2014.)
𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))       ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
 
Theoremcurry1val 8146 The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))       ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = (𝐶𝐹𝐷))
 
Theoremcurry1f 8147 Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008.)
𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))       ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐴) → 𝐺:𝐵𝐷)
 
Theoremcurry2 8148* Composition with (1st ↾ (V × {𝐶})) turns any binary operation 𝐹 with a constant second operand into a function 𝐺 of the first operand only. This transformation is called "currying". (If this becomes frequently used, we can introduce a new notation for the hypothesis.) (Contributed by NM, 16-Dec-2008.)
𝐺 = (𝐹(1st ↾ (V × {𝐶})))       ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
 
Theoremcurry2f 8149 Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.)
𝐺 = (𝐹(1st ↾ (V × {𝐶})))       ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐵) → 𝐺:𝐴𝐷)
 
Theoremcurry2val 8150 The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.)
𝐺 = (𝐹(1st ↾ (V × {𝐶})))       ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝐺𝐷) = (𝐷𝐹𝐶))
 
Theoremcnvf1olem 8151 Lemma for cnvf1o 8152. (Contributed by Mario Carneiro, 27-Apr-2014.)
((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))
 
Theoremcnvf1o 8152* Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
(Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
 
Theoremfparlem1 8153 Lemma for fpar 8157. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)
 
Theoremfparlem2 8154 Lemma for fpar 8157. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})
 
Theoremfparlem3 8155* Lemma for fpar 8157. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐹 Fn 𝐴 → ((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) = 𝑥𝐴 (({𝑥} × V) × ({(𝐹𝑥)} × V)))
 
Theoremfparlem4 8156* Lemma for fpar 8157. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐺 Fn 𝐵 → ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})))
 
Theoremfpar 8157* Merge two functions in parallel. Use as the second argument of a composition with a binary operation to build compound functions such as (𝑥 ∈ (0[,)+∞), 𝑦 ∈ ℝ ↦ ((√‘𝑥) + (sin‘𝑦))), see also ex-fpar 30494. (Contributed by NM, 17-Sep-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))       ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
 
Theoremfsplit 8158 A function that can be used to feed a common value to both operands of an operation. Use as the second argument of a composition with the function of fpar 8157 in order to build compound functions such as (𝑥 ∈ (0[,)+∞) ↦ ((√‘𝑥) + (sin‘𝑥))). (Contributed by NM, 17-Sep-2007.) Replace use of dfid2 5595 with df-id 5593. (Revised by BJ, 31-Dec-2023.)
(1st ↾ I ) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)
 
Theoremfsplitfpar 8159* Merge two functions with a common argument in parallel. Combination of fsplit 8158 and fpar 8157. (Contributed by AV, 3-Jan-2024.)
𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))    &   𝑆 = ((1st ↾ I ) ↾ 𝐴)       ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
 
Theoremoffsplitfpar 8160 Express the function operation map f by the functions defined in fsplit 8158 and fpar 8157. (Contributed by AV, 4-Jan-2024.)
𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))    &   𝑆 = ((1st ↾ I ) ↾ 𝐴)       (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = (𝐹f + 𝐺))
 
Theoremf2ndf 8161 The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
 
Theoremfo2ndf 8162 The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)
 
Theoremf1o2ndf1 8163 The 2nd (second component of an ordered pair) function restricted to a one-to-one function 𝐹 is a one-to-one function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)
 
Theoremopco1 8164 Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹𝐴))
 
Theoremopco2 8165 Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹𝐵))
 
Theoremopco1i 8166 Inference form of opco1 8164. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐵 ∈ V    &   𝐶 ∈ V       (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)
 
Theoremfrxp 8167* A lexicographical ordering of two well-founded classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) (Proof shortened by Wolf Lammen, 4-Oct-2014.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}       ((𝑅 Fr 𝐴𝑆 Fr 𝐵) → 𝑇 Fr (𝐴 × 𝐵))
 
Theoremxporderlem 8168* Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}       (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
 
Theorempoxp 8169* A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}       ((𝑅 Po 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐴 × 𝐵))
 
Theoremsoxp 8170* A lexicographical ordering of two strictly ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}       ((𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐴 × 𝐵))
 
Theoremwexp 8171* A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}       ((𝑅 We 𝐴𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵))
 
Theoremfnwelem 8172* Lemma for fnwe 8173. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝑅 We 𝐵)    &   (𝜑𝑆 We 𝐴)    &   (𝜑 → (𝐹𝑤) ∈ V)    &   𝑄 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))))}    &   𝐺 = (𝑧𝐴 ↦ ⟨(𝐹𝑧), 𝑧⟩)       (𝜑𝑇 We 𝐴)
 
Theoremfnwe 8173* A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝑅 We 𝐵)    &   (𝜑𝑆 We 𝐴)    &   (𝜑 → (𝐹𝑤) ∈ V)       (𝜑𝑇 We 𝐴)
 
Theoremfnse 8174* Condition for the well-order in fnwe 8173 to be set-like. (Contributed by Mario Carneiro, 25-Jun-2015.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝑅 Se 𝐵)    &   (𝜑 → (𝐹𝑤) ∈ V)       (𝜑𝑇 Se 𝐴)
 
Theoremfvproj 8175* Value of a function on ordered pairs with values expressed as ordered pairs. Note that 𝐹 and 𝐺 are the projections of 𝐻 to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019.)
𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ⟨(𝐹𝑋), (𝐺𝑌)⟩)
 
Theoremfimaproj 8176* Image of a cartesian product for a function on ordered pairs with values expressed as ordered pairs. Note that 𝐹 and 𝐺 are the projections of 𝐻 to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019.)
𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)    &   (𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐻 “ (𝑋 × 𝑌)) = ((𝐹𝑋) × (𝐺𝑌)))
 
Theoremralxpes 8177* A version of ralxp 5866 with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024.)
(∀𝑥 ∈ (𝐴 × 𝐵)[(1st𝑥) / 𝑦][(2nd𝑥) / 𝑧]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜑)
 
Theoremralxp3f 8178* Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 22-Aug-2024.)
𝑦𝜑    &   𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))       (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
 
Theoremralxp3 8179* Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025.)
(𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))       (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
 
Theoremralxp3es 8180* Restricted for-all over a triple Cartesian product with explicit substitution. (Contributed by Scott Fenton, 22-Aug-2024.)
(∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜑)
 
2.4.9  Induction on Cartesian products
 
Theoremfrpoins3xpg 8181* Special case of founded partial induction over a Cartesian product. (Contributed by Scott Fenton, 22-Aug-2024.)
((𝑥𝐴𝑦𝐵) → (∀𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ Pred(𝑅, (𝐴 × 𝐵), ⟨𝑥, 𝑦⟩) → 𝜒) → 𝜑))    &   (𝑥 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝑤 → (𝜓𝜒))    &   (𝑥 = 𝑋 → (𝜑𝜃))    &   (𝑦 = 𝑌 → (𝜃𝜏))       (((𝑅 Fr (𝐴 × 𝐵) ∧ 𝑅 Po (𝐴 × 𝐵) ∧ 𝑅 Se (𝐴 × 𝐵)) ∧ (𝑋𝐴𝑌𝐵)) → 𝜏)
 
Theoremfrpoins3xp3g 8182* Special case of founded partial recursion over a triple Cartesian product. (Contributed by Scott Fenton, 22-Aug-2024.)
((𝑥𝐴𝑦𝐵𝑧𝐶) → (∀𝑤𝑡𝑢(⟨𝑤, 𝑡, 𝑢⟩ ∈ Pred(𝑅, ((𝐴 × 𝐵) × 𝐶), ⟨𝑥, 𝑦, 𝑧⟩) → 𝜃) → 𝜑))    &   (𝑥 = 𝑤 → (𝜑𝜓))    &   (𝑦 = 𝑡 → (𝜓𝜒))    &   (𝑧 = 𝑢 → (𝜒𝜃))    &   (𝑥 = 𝑋 → (𝜑𝜏))    &   (𝑦 = 𝑌 → (𝜏𝜂))    &   (𝑧 = 𝑍 → (𝜂𝜁))       (((𝑅 Fr ((𝐴 × 𝐵) × 𝐶) ∧ 𝑅 Po ((𝐴 × 𝐵) × 𝐶) ∧ 𝑅 Se ((𝐴 × 𝐵) × 𝐶)) ∧ (𝑋𝐴𝑌𝐵𝑍𝐶)) → 𝜁)
 
2.4.10  Ordering on Cartesian products
 
Theoremxpord2lem 8183* Lemma for Cartesian product ordering. Calculate the value of the Cartesian product relation. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}       (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵) ∧ ((𝑎𝑅𝑐𝑎 = 𝑐) ∧ (𝑏𝑆𝑑𝑏 = 𝑑) ∧ (𝑎𝑐𝑏𝑑))))
 
Theorempoxp2 8184* Another way of partially ordering a Cartesian product of two classes. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Po 𝐴)    &   (𝜑𝑆 Po 𝐵)       (𝜑𝑇 Po (𝐴 × 𝐵))
 
Theoremfrxp2 8185* Another way of giving a well-founded order to a Cartesian product of two classes. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Fr 𝐴)    &   (𝜑𝑆 Fr 𝐵)       (𝜑𝑇 Fr (𝐴 × 𝐵))
 
Theoremxpord2pred 8186* Calculate the predecessor class in frxp2 8185. (Contributed by Scott Fenton, 22-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}       ((𝑋𝐴𝑌𝐵) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑋, 𝑌⟩) = (((Pred(𝑅, 𝐴, 𝑋) ∪ {𝑋}) × (Pred(𝑆, 𝐵, 𝑌) ∪ {𝑌})) ∖ {⟨𝑋, 𝑌⟩}))
 
Theoremsexp2 8187* Condition for the relation in frxp2 8185 to be set-like. (Contributed by Scott Fenton, 19-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Se 𝐴)    &   (𝜑𝑆 Se 𝐵)       (𝜑𝑇 Se (𝐴 × 𝐵))
 
Theoremxpord2indlem 8188* Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}    &   𝑅 Fr 𝐴    &   𝑅 Po 𝐴    &   𝑅 Se 𝐴    &   𝑆 Fr 𝐵    &   𝑆 Po 𝐵    &   𝑆 Se 𝐵    &   (𝑎 = 𝑐 → (𝜑𝜓))    &   (𝑏 = 𝑑 → (𝜓𝜒))    &   (𝑎 = 𝑐 → (𝜃𝜒))    &   (𝑎 = 𝑋 → (𝜑𝜏))    &   (𝑏 = 𝑌 → (𝜏𝜂))    &   ((𝑎𝐴𝑏𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑))       ((𝑋𝐴𝑌𝐵) → 𝜂)
 
Theoremxpord2ind 8189* Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.)
𝑅 Fr 𝐴    &   𝑅 Po 𝐴    &   𝑅 Se 𝐴    &   𝑆 Fr 𝐵    &   𝑆 Po 𝐵    &   𝑆 Se 𝐵    &   (𝑎 = 𝑐 → (𝜑𝜓))    &   (𝑏 = 𝑑 → (𝜓𝜒))    &   (𝑎 = 𝑐 → (𝜃𝜒))    &   (𝑎 = 𝑋 → (𝜑𝜏))    &   (𝑏 = 𝑌 → (𝜏𝜂))    &   ((𝑎𝐴𝑏𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑))       ((𝑋𝐴𝑌𝐵) → 𝜂)
 
Theoremxpord3lem 8190* Lemma for triple ordering. Calculate the value of the relation. (Contributed by Scott Fenton, 21-Aug-2024.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}       (⟨𝑎, 𝑏, 𝑐𝑈𝑑, 𝑒, 𝑓⟩ ↔ ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓))))
 
Theorempoxp3 8191* Triple Cartesian product partial ordering. (Contributed by Scott Fenton, 21-Aug-2024.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Po 𝐴)    &   (𝜑𝑆 Po 𝐵)    &   (𝜑𝑇 Po 𝐶)       (𝜑𝑈 Po ((𝐴 × 𝐵) × 𝐶))
 
Theoremfrxp3 8192* Give well-foundedness over a triple Cartesian product. (Contributed by Scott Fenton, 21-Aug-2024.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Fr 𝐴)    &   (𝜑𝑆 Fr 𝐵)    &   (𝜑𝑇 Fr 𝐶)       (𝜑𝑈 Fr ((𝐴 × 𝐵) × 𝐶))
 
Theoremxpord3pred 8193* Calculate the predecsessor class for the triple order. (Contributed by Scott Fenton, 31-Jan-2025.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}       ((𝑋𝐴𝑌𝐵𝑍𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), ⟨𝑋, 𝑌, 𝑍⟩) = ((((Pred(𝑅, 𝐴, 𝑋) ∪ {𝑋}) × (Pred(𝑆, 𝐵, 𝑌) ∪ {𝑌})) × (Pred(𝑇, 𝐶, 𝑍) ∪ {𝑍})) ∖ {⟨𝑋, 𝑌, 𝑍⟩}))
 
Theoremsexp3 8194* Show that the triple order is set-like. (Contributed by Scott Fenton, 21-Aug-2024.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}    &   (𝜑𝑅 Se 𝐴)    &   (𝜑𝑆 Se 𝐵)    &   (𝜑𝑇 Se 𝐶)       (𝜑𝑈 Se ((𝐴 × 𝐵) × 𝐶))
 
Theoremxpord3inddlem 8195* Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025.)
𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}    &   (𝜅𝑋𝐴)    &   (𝜅𝑌𝐵)    &   (𝜅𝑍𝐶)    &   (𝜅𝑅 Fr 𝐴)    &   (𝜅𝑅 Po 𝐴)    &   (𝜅𝑅 Se 𝐴)    &   (𝜅𝑆 Fr 𝐵)    &   (𝜅𝑆 Po 𝐵)    &   (𝜅𝑆 Se 𝐵)    &   (𝜅𝑇 Fr 𝐶)    &   (𝜅𝑇 Po 𝐶)    &   (𝜅𝑇 Se 𝐶)    &   (𝑎 = 𝑑 → (𝜑𝜓))    &   (𝑏 = 𝑒 → (𝜓𝜒))    &   (𝑐 = 𝑓 → (𝜒𝜃))    &   (𝑎 = 𝑑 → (𝜏𝜃))    &   (𝑏 = 𝑒 → (𝜂𝜏))    &   (𝑏 = 𝑒 → (𝜁𝜃))    &   (𝑐 = 𝑓 → (𝜎𝜏))    &   (𝑎 = 𝑋 → (𝜑𝜌))    &   (𝑏 = 𝑌 → (𝜌𝜇))    &   (𝑐 = 𝑍 → (𝜇𝜆))    &   ((𝜅 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))       (𝜅𝜆)
 
Theoremxpord3indd 8196* Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025.)
(𝜅𝑋𝐴)    &   (𝜅𝑌𝐵)    &   (𝜅𝑍𝐶)    &   (𝜅𝑅 Fr 𝐴)    &   (𝜅𝑅 Po 𝐴)    &   (𝜅𝑅 Se 𝐴)    &   (𝜅𝑆 Fr 𝐵)    &   (𝜅𝑆 Po 𝐵)    &   (𝜅𝑆 Se 𝐵)    &   (𝜅𝑇 Fr 𝐶)    &   (𝜅𝑇 Po 𝐶)    &   (𝜅𝑇 Se 𝐶)    &   (𝑎 = 𝑑 → (𝜑𝜓))    &   (𝑏 = 𝑒 → (𝜓𝜒))    &   (𝑐 = 𝑓 → (𝜒𝜃))    &   (𝑎 = 𝑑 → (𝜏𝜃))    &   (𝑏 = 𝑒 → (𝜂𝜏))    &   (𝑏 = 𝑒 → (𝜁𝜃))    &   (𝑐 = 𝑓 → (𝜎𝜏))    &   (𝑎 = 𝑋 → (𝜑𝜌))    &   (𝑏 = 𝑌 → (𝜌𝜇))    &   (𝑐 = 𝑍 → (𝜇𝜆))    &   ((𝜅 ∧ (𝑎𝐴𝑏𝐵𝑐𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))       (𝜅𝜆)
 
Theoremxpord3ind 8197* Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024.)
𝑅 Fr 𝐴    &   𝑅 Po 𝐴    &   𝑅 Se 𝐴    &   𝑆 Fr 𝐵    &   𝑆 Po 𝐵    &   𝑆 Se 𝐵    &   𝑇 Fr 𝐶    &   𝑇 Po 𝐶    &   𝑇 Se 𝐶    &   (𝑎 = 𝑑 → (𝜑𝜓))    &   (𝑏 = 𝑒 → (𝜓𝜒))    &   (𝑐 = 𝑓 → (𝜒𝜃))    &   (𝑎 = 𝑑 → (𝜏𝜃))    &   (𝑏 = 𝑒 → (𝜂𝜏))    &   (𝑏 = 𝑒 → (𝜁𝜃))    &   (𝑐 = 𝑓 → (𝜎𝜏))    &   (𝑎 = 𝑋 → (𝜑𝜌))    &   (𝑏 = 𝑌 → (𝜌𝜇))    &   (𝑐 = 𝑍 → (𝜇𝜆))    &   ((𝑎𝐴𝑏𝐵𝑐𝐶) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑))       ((𝑋𝐴𝑌𝐵𝑍𝐶) → 𝜆)
 
2.4.11  Ordering Ordinal Sequences
 
Theoremorderseqlem 8198* Lemma for poseq 8199 and soseq 8200. The function value of a sequence is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.)
𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}       (𝐺𝐹 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
 
Theoremposeq 8199* A partial ordering of ordinal sequences. (Contributed by Scott Fenton, 8-Jun-2011.)
𝑅 Po (𝐴 ∪ {∅})    &   𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}    &   𝑆 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐹𝑔𝐹) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥)𝑅(𝑔𝑥)))}       𝑆 Po 𝐹
 
Theoremsoseq 8200* A linear ordering of ordinal sequences. (Contributed by Scott Fenton, 8-Jun-2011.)
𝑅 Or (𝐴 ∪ {∅})    &   𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}    &   𝑆 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐹𝑔𝐹) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥)𝑅(𝑔𝑥)))}    &    ¬ ∅ ∈ 𝐴       𝑆 Or 𝐹
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48899
  Copyright terms: Public domain < Previous  Next >