| Metamath
Proof Explorer Theorem List (p. 82 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-supp 8101* | Define the support of a function against a "zero" value. According to Wikipedia ("Support (mathematics)", 31-Mar-2019, https://en.wikipedia.org/wiki/Support_(mathematics)) "In mathematics, the support of a real-valued function f is the subset of the domain containing those elements which are not mapped to zero." and "The notion of support also extends in a natural way to functions taking values in more general sets than R [the real numbers] and to other objects." The following definition allows for such extensions, being applicable for any sets (which usually are functions) and any element (even not necessarily from the range of the function) regarded as "zero". (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.) |
| ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) | ||
| Theorem | suppval 8102* | The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) | ||
| Theorem | supp0prc 8103 | The support of a class is empty if either the class or the "zero" is a proper class. (Contributed by AV, 28-May-2019.) |
| ⊢ (¬ (𝑋 ∈ V ∧ 𝑍 ∈ V) → (𝑋 supp 𝑍) = ∅) | ||
| Theorem | suppvalbr 8104* | The value of the operation constructing the support of a function expressed by binary relations. (Contributed by AV, 7-Apr-2019.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) | ||
| Theorem | supp0 8105 | The support of the empty set is the empty set. (Contributed by AV, 12-Apr-2019.) |
| ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = ∅) | ||
| Theorem | suppval1 8106* | The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.) |
| ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) | ||
| Theorem | suppvalfng 8107* | The value of the operation constructing the support of a function with a given domain. This version of suppvalfn 8108 assumes 𝐹 is a set rather than its domain 𝑋, avoiding ax-rep 5221. (Contributed by SN, 5-Aug-2024.) |
| ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) | ||
| Theorem | suppvalfn 8108* | The value of the operation constructing the support of a function with a given domain. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 22-Apr-2019.) |
| ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) | ||
| Theorem | elsuppfng 8109 | An element of the support of a function with a given domain. This version of elsuppfn 8110 assumes 𝐹 is a set rather than its domain 𝑋, avoiding ax-rep 5221. (Contributed by SN, 5-Aug-2024.) |
| ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍))) | ||
| Theorem | elsuppfn 8110 | An element of the support of a function with a given domain. (Contributed by AV, 27-May-2019.) |
| ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍))) | ||
| Theorem | fvdifsupp 8111 | Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = 𝑍) | ||
| Theorem | cnvimadfsn 8112* | The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019.) |
| ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} | ||
| Theorem | suppimacnvss 8113 | The support of functions "defined" by inverse images is a subset of the support defined by df-supp 8101. (Contributed by AV, 7-Apr-2019.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) | ||
| Theorem | suppimacnv 8114 | Support sets of functions expressed by inverse images. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 7-Apr-2019.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = (◡𝑅 “ (V ∖ {𝑍}))) | ||
| Theorem | fsuppeq 8115 | Two ways of writing the support of a function with known codomain. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.) |
| ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) | ||
| Theorem | fsuppeqg 8116 | Version of fsuppeq 8115 avoiding ax-rep 5221 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 30-Jul-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) | ||
| Theorem | suppssdm 8117 | The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
| ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 | ||
| Theorem | suppsnop 8118 | The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019.) |
| ⊢ 𝐹 = {〈𝑋, 𝑌〉} ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋})) | ||
| Theorem | snopsuppss 8119 | The support of a singleton containing an ordered pair is a subset of the singleton containing the first element of the ordered pair, i.e. it is empty or the singleton itself. (Contributed by AV, 19-Jul-2019.) |
| ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋} | ||
| Theorem | fvn0elsupp 8120 | If the function value for a given argument is not empty, the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 2-Jul-2019.) (Revised by AV, 4-Apr-2020.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺‘𝑋) ≠ ∅)) → 𝑋 ∈ (𝐺 supp ∅)) | ||
| Theorem | fvn0elsuppb 8121 | The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅))) | ||
| Theorem | rexsupp 8122* | Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by AV, 27-May-2019.) |
| ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥 ∈ 𝑋 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | ||
| Theorem | ressuppss 8123 | The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
| Theorem | suppun 8124 | The support of a class/function is a subset of the support of the union of this class/function with another class/function. (Contributed by AV, 4-Jun-2019.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍)) | ||
| Theorem | ressuppssdif 8125 | The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) | ||
| Theorem | mptsuppdifd 8126* | The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) | ||
| Theorem | mptsuppd 8127* | The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019.) (Revised by AV, 28-May-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍}) | ||
| Theorem | extmptsuppeq 8128* | The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 30-Jun-2019.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐵 ∖ 𝐴)) → 𝑋 = 𝑍) ⇒ ⊢ (𝜑 → ((𝑛 ∈ 𝐴 ↦ 𝑋) supp 𝑍) = ((𝑛 ∈ 𝐵 ↦ 𝑋) supp 𝑍)) | ||
| Theorem | suppfnss 8129* | The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 6-Jun-2022.) |
| ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))) | ||
| Theorem | funsssuppss 8130 | The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019.) |
| ⊢ ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) | ||
| Theorem | fnsuppres 8131 | Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 28-May-2019.) |
| ⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹 ↾ 𝐵) = (𝐵 × {𝑍}))) | ||
| Theorem | fnsuppeq0 8132 | The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) | ||
| Theorem | fczsupp0 8133 | The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019.) |
| ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ | ||
| Theorem | suppss 8134* | Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 5-Aug-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | ||
| Theorem | suppssr 8135 | A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) | ||
| Theorem | suppssrg 8136 | A function is zero outside its support. Version of suppssr 8135 avoiding ax-rep 5221 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) | ||
| Theorem | suppssov1 8137* | Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 11-Apr-2025.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) | ||
| Theorem | suppssov2 8138* | Formula building theorem for support restrictions: operator with right annihilator. (Contributed by SN, 11-Apr-2025.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵) supp 𝑌) ⊆ 𝐿) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑣𝑂𝑌) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) | ||
| Theorem | suppssof1 8139* | Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
| ⊢ (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) & ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) & ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) ⊆ 𝐿) | ||
| Theorem | suppss2 8140* | Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) | ||
| Theorem | suppsssn 8141* | Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊) → 𝐵 = 𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ {𝑊}) | ||
| Theorem | suppssfv 8142* | Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) & ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) supp 𝑍) ⊆ 𝐿) | ||
| Theorem | suppofssd 8143 | Condition for the support of a function operation to be a subset of the union of the supports of the left and right function terms. (Contributed by Steven Nguyen, 28-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → (𝑍𝑋𝑍) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) | ||
| Theorem | suppofss1d 8144* | Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍𝑋𝑥) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
| Theorem | suppofss2d 8145* | Condition for the support of a function operation to be a subset of the support of the right function term. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝑋𝑍) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍)) | ||
| Theorem | suppco 8146 | The support of the composition of two functions is the inverse image by the inner function of the support of the outer function. (Contributed by AV, 30-May-2019.) Extract this statement from the proof of supp0cosupp0 8148. (Revised by SN, 15-Sep-2023.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡𝐺 “ (𝐹 supp 𝑍))) | ||
| Theorem | suppcoss 8147 | The support of the composition of two functions is a subset of the support of the inner function if the outer function preserves zero. Compare suppssfv 8142, which has a sethood condition on 𝐴 instead of 𝐵. (Contributed by SN, 25-May-2024.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑌)) | ||
| Theorem | supp0cosupp0 8148 | The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) | ||
| Theorem | imacosupp 8149 | The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍))) | ||
The following theorems are about maps-to operations (see df-mpo 7358) where the domain of the second argument depends on the domain of the first argument, especially when the first argument is a pair and the base set of the second argument is the first component of the first argument, in short "x-maps-to operations". For labels, the abbreviations "mpox" are used (since "x" usually denotes the first argument). This is in line with the currently used conventions for such cases (see cbvmpox 7446, ovmpox 7506 and fmpox 8009). If the first argument is an ordered pair, as in the following, the abbreviation is extended to "mpoxop", and the maps-to operations are called "x-op maps-to operations" for short. | ||
| Theorem | opeliunxp2f 8150* | Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 5785. (Contributed by AV, 25-Oct-2020.) |
| ⊢ Ⅎ𝑥𝐸 & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) ⇒ ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) | ||
| Theorem | mpoxeldm 8151* | If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) | ||
| Theorem | mpoxneldm 8152* | If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) | ||
| Theorem | mpoxopn0yelv 8153* | If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) | ||
| Theorem | mpoxopynvov0g 8154* | If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
| Theorem | mpoxopxnop0 8155* | If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is not an ordered pair, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) | ||
| Theorem | mpoxopx0ov0 8156* | If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is the empty set, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (∅𝐹𝐾) = ∅ | ||
| Theorem | mpoxopxprcov0 8157* | If the components of the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, are not sets, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
| Theorem | mpoxopynvov0 8158* | If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
| Theorem | mpoxopoveq 8159* | Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) ⇒ ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) | ||
| Theorem | mpoxopovel 8160* | Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | ||
| Theorem | mpoxopoveqd 8161* | Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) & ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) & ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} = ∅) ⇒ ⊢ (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) | ||
| Theorem | brovex 8162* | A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.) |
| ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) & ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸)) ⇒ ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | ||
| Theorem | brovmpoex 8163* | A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.) |
| ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) ⇒ ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | ||
| Theorem | sprmpod 8164* | The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 20-Jun-2019.) |
| ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) & ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) & ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) & ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) ⇒ ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) | ||
| Syntax | ctpos 8165 | The transposition of a function. |
| class tpos 𝐹 | ||
| Definition | df-tpos 8166* | Define the transposition of a function, which is a function 𝐺 = tpos 𝐹 satisfying 𝐺(𝑥, 𝑦) = 𝐹(𝑦, 𝑥). (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | ||
| Theorem | tposss 8167 | Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) | ||
| Theorem | tposeq 8168 | Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) | ||
| Theorem | tposeqd 8169 | Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) | ||
| Theorem | tposssxp 8170 | The transposition is a subset of a Cartesian product. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | ||
| Theorem | reltpos 8171 | The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ Rel tpos 𝐹 | ||
| Theorem | brtpos2 8172 | Value of the transposition at an ordered pair 〈𝐴, 𝐵〉. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) | ||
| Theorem | brtpos0 8173 | The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 8175. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) | ||
| Theorem | reldmtpos 8174 | Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | ||
| Theorem | brtpos 8175 | The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | ||
| Theorem | ottpos 8176 | The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) | ||
| Theorem | relbrtpos 8177 | The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| ⊢ (Rel 𝐹 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | ||
| Theorem | dmtpos 8178 | The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | ||
| Theorem | rntpos 8179 | The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹) | ||
| Theorem | tposexg 8180 | The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) | ||
| Theorem | ovtpos 8181 | The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to ℝ or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) | ||
| Theorem | tposfun 8182 | The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Fun 𝐹 → Fun tpos 𝐹) | ||
| Theorem | dftpos2 8183* | Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) | ||
| Theorem | dftpos3 8184* | Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 5631. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → tpos 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 〈𝑦, 𝑥〉𝐹𝑧}) | ||
| Theorem | dftpos4 8185* | Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | ||
| Theorem | tpostpos 8186 | Value of the double transposition for a general class 𝐹. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V)) | ||
| Theorem | tpostpos2 8187 | Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹) | ||
| Theorem | tposfn2 8188 | The domain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) | ||
| Theorem | tposfo2 8189 | Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) | ||
| Theorem | tposf2 8190 | The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) | ||
| Theorem | tposf12 8191 | Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1→𝐵 → tpos 𝐹:◡𝐴–1-1→𝐵)) | ||
| Theorem | tposf1o2 8192 | Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1-onto→𝐵 → tpos 𝐹:◡𝐴–1-1-onto→𝐵)) | ||
| Theorem | tposfo 8193 | The domain and codomain/range of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) | ||
| Theorem | tposf 8194 | The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) | ||
| Theorem | tposfn 8195 | Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝐹 Fn (𝐴 × 𝐵) → tpos 𝐹 Fn (𝐵 × 𝐴)) | ||
| Theorem | tpos0 8196 | Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
| ⊢ tpos ∅ = ∅ | ||
| Theorem | tposco 8197 | Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) | ||
| Theorem | tpossym 8198* | Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))) | ||
| Theorem | tposeqi 8199 | Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝐹 = 𝐺 ⇒ ⊢ tpos 𝐹 = tpos 𝐺 | ||
| Theorem | tposex 8200 | A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ tpos 𝐹 ∈ V | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |