| Metamath
Proof Explorer Theorem List (p. 82 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fvdifsupp 8101 | Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = 𝑍) | ||
| Theorem | cnvimadfsn 8102* | The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019.) |
| ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} | ||
| Theorem | suppimacnvss 8103 | The support of functions "defined" by inverse images is a subset of the support defined by df-supp 8091. (Contributed by AV, 7-Apr-2019.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) | ||
| Theorem | suppimacnv 8104 | Support sets of functions expressed by inverse images. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 7-Apr-2019.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = (◡𝑅 “ (V ∖ {𝑍}))) | ||
| Theorem | fsuppeq 8105 | Two ways of writing the support of a function with known codomain. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.) |
| ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) | ||
| Theorem | fsuppeqg 8106 | Version of fsuppeq 8105 avoiding ax-rep 5217 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 30-Jul-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) | ||
| Theorem | suppssdm 8107 | The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
| ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 | ||
| Theorem | suppsnop 8108 | The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019.) |
| ⊢ 𝐹 = {〈𝑋, 𝑌〉} ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋})) | ||
| Theorem | snopsuppss 8109 | The support of a singleton containing an ordered pair is a subset of the singleton containing the first element of the ordered pair, i.e. it is empty or the singleton itself. (Contributed by AV, 19-Jul-2019.) |
| ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋} | ||
| Theorem | fvn0elsupp 8110 | If the function value for a given argument is not empty, the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 2-Jul-2019.) (Revised by AV, 4-Apr-2020.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺‘𝑋) ≠ ∅)) → 𝑋 ∈ (𝐺 supp ∅)) | ||
| Theorem | fvn0elsuppb 8111 | The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅))) | ||
| Theorem | rexsupp 8112* | Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by AV, 27-May-2019.) |
| ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥 ∈ 𝑋 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | ||
| Theorem | ressuppss 8113 | The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
| Theorem | suppun 8114 | The support of a class/function is a subset of the support of the union of this class/function with another class/function. (Contributed by AV, 4-Jun-2019.) |
| ⊢ (𝜑 → 𝐺 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍)) | ||
| Theorem | ressuppssdif 8115 | The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) | ||
| Theorem | mptsuppdifd 8116* | The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) | ||
| Theorem | mptsuppd 8117* | The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019.) (Revised by AV, 28-May-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍}) | ||
| Theorem | extmptsuppeq 8118* | The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 30-Jun-2019.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐵 ∖ 𝐴)) → 𝑋 = 𝑍) ⇒ ⊢ (𝜑 → ((𝑛 ∈ 𝐴 ↦ 𝑋) supp 𝑍) = ((𝑛 ∈ 𝐵 ↦ 𝑋) supp 𝑍)) | ||
| Theorem | suppfnss 8119* | The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 6-Jun-2022.) |
| ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))) | ||
| Theorem | funsssuppss 8120 | The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019.) |
| ⊢ ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) | ||
| Theorem | fnsuppres 8121 | Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 28-May-2019.) |
| ⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹 ↾ 𝐵) = (𝐵 × {𝑍}))) | ||
| Theorem | fnsuppeq0 8122 | The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) | ||
| Theorem | fczsupp0 8123 | The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019.) |
| ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ | ||
| Theorem | suppss 8124* | Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 5-Aug-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | ||
| Theorem | suppssr 8125 | A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) | ||
| Theorem | suppssrg 8126 | A function is zero outside its support. Version of suppssr 8125 avoiding ax-rep 5217 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) | ||
| Theorem | suppssov1 8127* | Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 11-Apr-2025.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) | ||
| Theorem | suppssov2 8128* | Formula building theorem for support restrictions: operator with right annihilator. (Contributed by SN, 11-Apr-2025.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵) supp 𝑌) ⊆ 𝐿) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑣𝑂𝑌) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) | ||
| Theorem | suppssof1 8129* | Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
| ⊢ (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) & ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) & ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴 ∘f 𝑂𝐵) supp 𝑍) ⊆ 𝐿) | ||
| Theorem | suppss2 8130* | Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) | ||
| Theorem | suppsssn 8131* | Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊) → 𝐵 = 𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ {𝑊}) | ||
| Theorem | suppssfv 8132* | Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) & ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) supp 𝑍) ⊆ 𝐿) | ||
| Theorem | suppofssd 8133 | Condition for the support of a function operation to be a subset of the union of the supports of the left and right function terms. (Contributed by Steven Nguyen, 28-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → (𝑍𝑋𝑍) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) | ||
| Theorem | suppofss1d 8134* | Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍𝑋𝑥) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
| Theorem | suppofss2d 8135* | Condition for the support of a function operation to be a subset of the support of the right function term. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝑋𝑍) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍)) | ||
| Theorem | suppco 8136 | The support of the composition of two functions is the inverse image by the inner function of the support of the outer function. (Contributed by AV, 30-May-2019.) Extract this statement from the proof of supp0cosupp0 8138. (Revised by SN, 15-Sep-2023.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡𝐺 “ (𝐹 supp 𝑍))) | ||
| Theorem | suppcoss 8137 | The support of the composition of two functions is a subset of the support of the inner function if the outer function preserves zero. Compare suppssfv 8132, which has a sethood condition on 𝐴 instead of 𝐵. (Contributed by SN, 25-May-2024.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑌)) | ||
| Theorem | supp0cosupp0 8138 | The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) | ||
| Theorem | imacosupp 8139 | The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍))) | ||
The following theorems are about maps-to operations (see df-mpo 7351) where the domain of the second argument depends on the domain of the first argument, especially when the first argument is a pair and the base set of the second argument is the first component of the first argument, in short "x-maps-to operations". For labels, the abbreviations "mpox" are used (since "x" usually denotes the first argument). This is in line with the currently used conventions for such cases (see cbvmpox 7439, ovmpox 7499 and fmpox 7999). If the first argument is an ordered pair, as in the following, the abbreviation is extended to "mpoxop", and the maps-to operations are called "x-op maps-to operations" for short. | ||
| Theorem | opeliunxp2f 8140* | Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 5778. (Contributed by AV, 25-Oct-2020.) |
| ⊢ Ⅎ𝑥𝐸 & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) ⇒ ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) | ||
| Theorem | mpoxeldm 8141* | If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) | ||
| Theorem | mpoxneldm 8142* | If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) | ||
| Theorem | mpoxopn0yelv 8143* | If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) | ||
| Theorem | mpoxopynvov0g 8144* | If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
| Theorem | mpoxopxnop0 8145* | If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is not an ordered pair, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) | ||
| Theorem | mpoxopx0ov0 8146* | If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is the empty set, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (∅𝐹𝐾) = ∅ | ||
| Theorem | mpoxopxprcov0 8147* | If the components of the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, are not sets, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
| Theorem | mpoxopynvov0 8148* | If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
| Theorem | mpoxopoveq 8149* | Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) ⇒ ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) | ||
| Theorem | mpoxopovel 8150* | Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | ||
| Theorem | mpoxopoveqd 8151* | Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) & ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) & ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} = ∅) ⇒ ⊢ (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) | ||
| Theorem | brovex 8152* | A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.) |
| ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) & ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸)) ⇒ ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | ||
| Theorem | brovmpoex 8153* | A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.) |
| ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) ⇒ ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | ||
| Theorem | sprmpod 8154* | The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 20-Jun-2019.) |
| ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) & ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) & ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) & ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) ⇒ ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) | ||
| Syntax | ctpos 8155 | The transposition of a function. |
| class tpos 𝐹 | ||
| Definition | df-tpos 8156* | Define the transposition of a function, which is a function 𝐺 = tpos 𝐹 satisfying 𝐺(𝑥, 𝑦) = 𝐹(𝑦, 𝑥). (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | ||
| Theorem | tposss 8157 | Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) | ||
| Theorem | tposeq 8158 | Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) | ||
| Theorem | tposeqd 8159 | Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) | ||
| Theorem | tposssxp 8160 | The transposition is a subset of a Cartesian product. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | ||
| Theorem | reltpos 8161 | The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ Rel tpos 𝐹 | ||
| Theorem | brtpos2 8162 | Value of the transposition at an ordered pair 〈𝐴, 𝐵〉. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) | ||
| Theorem | brtpos0 8163 | The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 8165. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) | ||
| Theorem | reldmtpos 8164 | Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | ||
| Theorem | brtpos 8165 | The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | ||
| Theorem | ottpos 8166 | The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) | ||
| Theorem | relbrtpos 8167 | The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| ⊢ (Rel 𝐹 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | ||
| Theorem | dmtpos 8168 | The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | ||
| Theorem | rntpos 8169 | The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹) | ||
| Theorem | tposexg 8170 | The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) | ||
| Theorem | ovtpos 8171 | The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to ℝ or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) | ||
| Theorem | tposfun 8172 | The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Fun 𝐹 → Fun tpos 𝐹) | ||
| Theorem | dftpos2 8173* | Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) | ||
| Theorem | dftpos3 8174* | Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 5624. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → tpos 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 〈𝑦, 𝑥〉𝐹𝑧}) | ||
| Theorem | dftpos4 8175* | Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | ||
| Theorem | tpostpos 8176 | Value of the double transposition for a general class 𝐹. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V)) | ||
| Theorem | tpostpos2 8177 | Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹) | ||
| Theorem | tposfn2 8178 | The domain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) | ||
| Theorem | tposfo2 8179 | Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) | ||
| Theorem | tposf2 8180 | The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) | ||
| Theorem | tposf12 8181 | Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1→𝐵 → tpos 𝐹:◡𝐴–1-1→𝐵)) | ||
| Theorem | tposf1o2 8182 | Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1-onto→𝐵 → tpos 𝐹:◡𝐴–1-1-onto→𝐵)) | ||
| Theorem | tposfo 8183 | The domain and codomain/range of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) | ||
| Theorem | tposf 8184 | The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) | ||
| Theorem | tposfn 8185 | Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝐹 Fn (𝐴 × 𝐵) → tpos 𝐹 Fn (𝐵 × 𝐴)) | ||
| Theorem | tpos0 8186 | Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
| ⊢ tpos ∅ = ∅ | ||
| Theorem | tposco 8187 | Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) | ||
| Theorem | tpossym 8188* | Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))) | ||
| Theorem | tposeqi 8189 | Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝐹 = 𝐺 ⇒ ⊢ tpos 𝐹 = tpos 𝐺 | ||
| Theorem | tposex 8190 | A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ tpos 𝐹 ∈ V | ||
| Theorem | nftpos 8191 | Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥tpos 𝐹 | ||
| Theorem | tposoprab 8192* | Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⇒ ⊢ tpos 𝐹 = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ 𝜑} | ||
| Theorem | tposmpo 8193* | Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) | ||
| Theorem | tposconst 8194 | The transposition of a constant operation using the relation representation. (Contributed by SO, 11-Jul-2018.) |
| ⊢ tpos ((𝐴 × 𝐵) × {𝐶}) = ((𝐵 × 𝐴) × {𝐶}) | ||
| Syntax | ccur 8195 | Extend class notation to include the currying function. |
| class curry 𝐴 | ||
| Syntax | cunc 8196 | Extend class notation to include the uncurrying function. |
| class uncurry 𝐴 | ||
| Definition | df-cur 8197* | Define the currying of 𝐹, which splits a function of two arguments into a function of the first argument, producing a function over the second argument. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐹𝑧}) | ||
| Definition | df-unc 8198* | Define the uncurrying of 𝐹, which takes a function producing functions, and transforms it into a two-argument function. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ uncurry 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑦(𝐹‘𝑥)𝑧} | ||
| Theorem | mpocurryd 8199* | The currying of an operation given in maps-to notation, splitting the operation (function of two arguments) into a function of the first argument, producing a function over the second argument. (Contributed by AV, 27-Oct-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) ⇒ ⊢ (𝜑 → curry 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) | ||
| Theorem | mpocurryvald 8200* | The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |