Home | Metamath
Proof Explorer Theorem List (p. 82 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46500) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frrlem8 8101* | Lemma for well-founded recursion. dom 𝐹 is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) | ||
Theorem | frrlem9 8102* | Lemma for well-founded recursion. Show that the well-founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial orders or the axiom of infinity. (Contributed by Scott Fenton, 27-Aug-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
Theorem | frrlem10 8103* | Lemma for well-founded recursion. Under the compatibility hypothesis, compute the value of 𝐹 within its domain. (Contributed by Scott Fenton, 6-Dec-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) ⇒ ⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) | ||
Theorem | frrlem11 8104* | Lemma for well-founded recursion. For the next several theorems we will be aiming to prove that dom 𝐹 = 𝐴. To do this, we set up a function 𝐶 that supposedly contains an element of 𝐴 that is not in dom 𝐹 and we show that the element must be in dom 𝐹. Our choice of what to restrict 𝐹 to depends on if we assume partial orders or the axiom of infinity. To begin with, we establish the functionality of 𝐶. (Contributed by Scott Fenton, 7-Dec-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) & ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) | ||
Theorem | frrlem12 8105* | Lemma for well-founded recursion. Next, we calculate the value of 𝐶. (Contributed by Scott Fenton, 7-Dec-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) & ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) & ⊢ (𝜑 → 𝑅 Fr 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ 𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶‘𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))) | ||
Theorem | frrlem13 8106* | Lemma for well-founded recursion. Assuming that 𝑆 is a subset of 𝐴 and that 𝑧 is 𝑅-minimal, then 𝐶 is an acceptable function. (Contributed by Scott Fenton, 7-Dec-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) & ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) & ⊢ (𝜑 → 𝑅 Fr 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ 𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑆 ∈ V) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑆 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 ∈ 𝐵) | ||
Theorem | frrlem14 8107* | Lemma for well-founded recursion. Finally, we tie all these threads together and show that dom 𝐹 = 𝐴 when given the right 𝑆. Specifically, we prove that there can be no 𝑅-minimal element of (𝐴 ∖ dom 𝐹). (Contributed by Scott Fenton, 7-Dec-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) & ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) & ⊢ (𝜑 → 𝑅 Fr 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ 𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑆 ∈ V) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑆 ⊆ 𝐴) & ⊢ ((𝜑 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) ⇒ ⊢ (𝜑 → dom 𝐹 = 𝐴) | ||
Theorem | fprlem1 8108* | Lemma for well-founded recursion with a partial order. Two acceptable functions are compatible. (Contributed by Scott Fenton, 11-Sep-2023.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | ||
Theorem | fprlem2 8109* | Lemma for well-founded recursion with a partial order. Establish a subset relationship. (Contributed by Scott Fenton, 11-Sep-2023.) |
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧)) | ||
Theorem | fpr2a 8110 | Weak version of fpr2 8112 which is useful for proofs that avoid the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
Theorem | fpr1 8111 | Law of well-founded recursion over a partial order, part one. Establish the functionality and domain of the recursive function generator. Note that by requiring a partial order we can avoid using the axiom of infinity. (Contributed by Scott Fenton, 11-Sep-2023.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) | ||
Theorem | fpr2 8112 | Law of well-founded recursion over a partial order, part two. Now we establish the value of 𝐹 within 𝐴. (Contributed by Scott Fenton, 11-Sep-2023.) (Proof shortened by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
Theorem | fpr3 8113* | Law of well-founded recursion over a partial order, part three. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in fpr1 8111 and fpr2 8112 is identical to 𝐹. (Contributed by Scott Fenton, 11-Sep-2023.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) | ||
Theorem | frrrel 8114 | Show without using the axiom of replacement that the well-founded recursion generator gives a relation. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ Rel 𝐹 | ||
Theorem | frrdmss 8115 | Show without using the axiom of replacement that the domain of the well-founded recursion generator is a subclass of 𝐴. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
Theorem | frrdmcl 8116 | Show without using the axiom of replacement that for a "function" defined by well-founded recursion, the predecessor class of an element of its domain is a subclass of its domain. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹) | ||
Theorem | fprfung 8117 | A "function" defined by well-founded recursion is indeed a function when the relationship is a partial order. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) | ||
Theorem | fprresex 8118 | The restriction of a function defined by well-founded recursion to the predecessor of an element of its domain is a set. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) | ||
Syntax | cwrecs 8119 | Declare syntax for the well-ordered recursive function generator. |
class wrecs(𝑅, 𝐴, 𝐹) | ||
Definition | df-wrecs 8120 | Define the well-ordered recursive function generator. This function takes the usual expressions from recursion theorems and forms a unified definition. Specifically, given a function 𝐹, a relation 𝑅, and a base set 𝐴, this definition generates a function 𝐺 = wrecs(𝑅, 𝐴, 𝐹) that has property that, at any point 𝑥 ∈ 𝐴, (𝐺‘𝑥) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑥))). See wfr1 8158, wfr2 8159, and wfr3 8160. (Contributed by Scott Fenton, 7-Jun-2018.) (Revised by BJ, 27-Oct-2024.) |
⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | ||
Theorem | dfwrecsOLD 8121* | Obsolete definition of the well-ordered recursive function generator as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 7-Jun-2018.) |
⊢ wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | ||
Theorem | wrecseq123 8122 | General equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) | ||
Theorem | wrecseq123OLD 8123 | Obsolete proof of wrecseq123 8122 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 7-Jun-2018.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) | ||
Theorem | nfwrecs 8124 | Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) | ||
Theorem | nfwrecsOLD 8125 | Obsolete proof of nfwrecs 8124 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 9-Jun-2018.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) | ||
Theorem | wrecseq1 8126 | Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) |
⊢ (𝑅 = 𝑆 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹)) | ||
Theorem | wrecseq2 8127 | Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) |
⊢ (𝐴 = 𝐵 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹)) | ||
Theorem | wrecseq3 8128 | Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) |
⊢ (𝐹 = 𝐺 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺)) | ||
Theorem | csbwrecsg 8129 | Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.) (Revised by Scott Fenton, 18-Nov-2024.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) | ||
Theorem | wfr3g 8130* | Functions defined by well-ordered recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011.) |
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺) | ||
Theorem | wfrlem1OLD 8131* | Lemma for well-ordered recursion. The final item we are interested in is the union of acceptable functions 𝐵. This lemma just changes bound variables for later use. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} | ||
Theorem | wfrlem2OLD 8132* | Lemma for well-ordered recursion. An acceptable function is a function. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) | ||
Theorem | wfrlem3OLD 8133* | Lemma for well-ordered recursion. An acceptable function's domain is a subset of 𝐴. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) | ||
Theorem | wfrlem3OLDa 8134* | Lemma for well-ordered recursion. Show membership in the class of acceptable functions. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 31-Jul-2020.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐺 ∈ V ⇒ ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) | ||
Theorem | wfrlem4OLD 8135* | Lemma for well-ordered recursion. Properties of the restriction of an acceptable function to the domain of another one. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by AV, 18-Jul-2022.) |
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) | ||
Theorem | wfrlem5OLD 8136* | Lemma for well-ordered recursion. The values of two acceptable functions agree within their domains. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | ||
Theorem | wfrrelOLD 8137 | Obsolete proof of wfrrel 8152 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 8-Jun-2018.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ Rel 𝐹 | ||
Theorem | wfrdmssOLD 8138 | Obsolete proof of wfrdmss 8153 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
Theorem | wfrlem8OLD 8139 | Lemma for well-ordered recursion. Compute the prececessor class for an 𝑅 minimal element of (𝐴 ∖ dom 𝐹). Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋)) | ||
Theorem | wfrdmclOLD 8140 | Obsolete proof of wfrdmcl 8154 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹) | ||
Theorem | wfrlem10OLD 8141* | Lemma for well-ordered recursion. When 𝑧 is an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), then its predecessor class is equal to dom 𝐹. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹) | ||
Theorem | wfrfunOLD 8142 | Obsolete proof of wfrfun 8155 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ Fun 𝐹 | ||
Theorem | wfrlem12OLD 8143* | Lemma for well-ordered recursion. Here, we compute the value of the recursive definition generator. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑦 ∈ dom 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) | ||
Theorem | wfrlem13OLD 8144* | Lemma for well-ordered recursion. From here through wfrlem16OLD 8147, we aim to prove that dom 𝐹 = 𝐴. We do this by supposing that there is an element 𝑧 of 𝐴 that is not in dom 𝐹. We then define 𝐶 by extending dom 𝐹 with the appropriate value at 𝑧. We then show that 𝑧 cannot be an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), meaning that (𝐴 ∖ dom 𝐹) must be empty, so dom 𝐹 = 𝐴. Here, we show that 𝐶 is a function extending the domain of 𝐹 by one. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) & ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ⇒ ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) | ||
Theorem | wfrlem14OLD 8145* | Lemma for well-ordered recursion. Compute the value of 𝐶. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) & ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ⇒ ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) | ||
Theorem | wfrlem15OLD 8146* | Lemma for well-ordered recursion. When 𝑧 is 𝑅 minimal, 𝐶 is an acceptable function. This step is where the Axiom of Replacement becomes required. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) & ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ⇒ ⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) | ||
Theorem | wfrlem16OLD 8147* | Lemma for well-ordered recursion. If 𝑧 is 𝑅 minimal in (𝐴 ∖ dom 𝐹), then 𝐶 is acceptable and thus a subset of 𝐹, but dom 𝐶 is bigger than dom 𝐹. Thus, 𝑧 cannot be minimal, so (𝐴 ∖ dom 𝐹) must be empty, and (due to wfrdmssOLD 8138), dom 𝐹 = 𝐴. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) & ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ⇒ ⊢ dom 𝐹 = 𝐴 | ||
Theorem | wfrlem17OLD 8148 | Without using ax-rep 5214, show that all restrictions of wrecs are sets. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 31-Jul-2020.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑋 ∈ dom 𝐹 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) | ||
Theorem | wfr2aOLD 8149 | Obsolete proof of wfr2a 8157 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 30-Jul-2020.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
Theorem | wfr1OLD 8150 | Obsolete proof of wfr1 8158 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ 𝐹 Fn 𝐴 | ||
Theorem | wfr2OLD 8151 | Obsolete proof of wfr2 8159 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑋 ∈ 𝐴 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
Theorem | wfrrel 8152 | The well-ordered recursion generator generates a relation. Avoids the axiom of replacement. (Contributed by Scott Fenton, 8-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ Rel 𝐹 | ||
Theorem | wfrdmss 8153 | The domain of the well-ordered recursion generator is a subclass of 𝐴. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
Theorem | wfrdmcl 8154 | The predecessor class of an element of the well-ordered recursion generator's domain is a subset of its domain. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹) | ||
Theorem | wfrfun 8155 | The "function" generated by the well-ordered recursion generator is indeed a function. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 17-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) | ||
Theorem | wfrresex 8156 | Show without using the axiom of replacement that the restriction of the well-ordered recursion generator to a predecessor class is a set. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) | ||
Theorem | wfr2a 8157 | A weak version of wfr2 8159 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020.) (Proof shortened by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
Theorem | wfr1 8158 | The Principle of Well-Ordered Recursion, part 1 of 3. We start with an arbitrary function 𝐺. Then, using a base class 𝐴 and a set-like well-ordering 𝑅 of 𝐴, we define a function 𝐹. This function is said to be defined by "well-ordered recursion". The purpose of these three theorems is to demonstrate the properties of 𝐹. We begin by showing that 𝐹 is a function over 𝐴. (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) | ||
Theorem | wfr2 8159 | The Principle of Well-Ordered Recursion, part 2 of 3. Next, we show that the value of 𝐹 at any 𝑋 ∈ 𝐴 is 𝐺 applied to all "previous" values of 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
Theorem | wfr3 8160* | The principle of Well-Ordered Recursion, part 3 of 3. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in wfr1 8158 and wfr2 8159 is identical to 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) | ||
Theorem | wfr3OLD 8161* | Obsolete form of wfr3 8160 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑅 We 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻) | ||
Theorem | iunon 8162* | The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ On) | ||
Theorem | iinon 8163* | The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) | ||
Theorem | onfununi 8164* | A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of [Enderton] p. 218. (Contributed by Eric Schmidt, 26-May-2009.) |
⊢ (Lim 𝑦 → (𝐹‘𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐹‘𝑥)) & ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐹‘𝑥) ⊆ (𝐹‘𝑦)) ⇒ ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹‘∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐹‘𝑥)) | ||
Theorem | onovuni 8165* | A variant of onfununi 8164 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) & ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) ⇒ ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) | ||
Theorem | onoviun 8166* | A variant of onovuni 8165 with indexed unions. (Contributed by Eric Schmidt, 26-May-2009.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) & ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) ⇒ ⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹∪ 𝑧 ∈ 𝐾 𝐿) = ∪ 𝑧 ∈ 𝐾 (𝐴𝐹𝐿)) | ||
Theorem | onnseq 8167* | There are no length ω decreasing sequences in the ordinals. See also noinfep 9406 for a stronger version assuming Regularity. (Contributed by Mario Carneiro, 19-May-2015.) |
⊢ ((𝐹‘∅) ∈ On → ∃𝑥 ∈ ω ¬ (𝐹‘suc 𝑥) ∈ (𝐹‘𝑥)) | ||
Syntax | wsmo 8168 | Introduce the strictly monotone ordinal function. A strictly monotone function is one that is constantly increasing across the ordinals. |
wff Smo 𝐴 | ||
Definition | df-smo 8169* | Definition of a strictly monotone ordinal function. Definition 7.46 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 15-Nov-2011.) |
⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | ||
Theorem | dfsmo2 8170* | Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.) |
⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | ||
Theorem | issmo 8171* | Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) Avoid ax-13 2374. (Revised by Gino Giotto, 19-May-2023.) |
⊢ 𝐴:𝐵⟶On & ⊢ Ord 𝐵 & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) & ⊢ dom 𝐴 = 𝐵 ⇒ ⊢ Smo 𝐴 | ||
Theorem | issmo2 8172* | Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) | ||
Theorem | smoeq 8173 | Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.) |
⊢ (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵)) | ||
Theorem | smodm 8174 | The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
⊢ (Smo 𝐴 → Ord dom 𝐴) | ||
Theorem | smores 8175 | A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
⊢ ((Smo 𝐴 ∧ 𝐵 ∈ dom 𝐴) → Smo (𝐴 ↾ 𝐵)) | ||
Theorem | smores3 8176 | A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) | ||
Theorem | smores2 8177 | A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
⊢ ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹 ↾ 𝐴)) | ||
Theorem | smodm2 8178 | The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | ||
Theorem | smofvon2 8179 | The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ (Smo 𝐹 → (𝐹‘𝐵) ∈ On) | ||
Theorem | iordsmo 8180 | The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
⊢ Ord 𝐴 ⇒ ⊢ Smo ( I ↾ 𝐴) | ||
Theorem | smo0 8181 | The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.) |
⊢ Smo ∅ | ||
Theorem | smofvon 8182 | If 𝐵 is a strictly monotone ordinal function, and 𝐴 is in the domain of 𝐵, then the value of the function at 𝐴 is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.) |
⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) | ||
Theorem | smoel 8183 | If 𝑥 is less than 𝑦 then a strictly monotone function's value will be strictly less at 𝑥 than at 𝑦. (Contributed by Andrew Salmon, 22-Nov-2011.) |
⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐵‘𝐶) ∈ (𝐵‘𝐴)) | ||
Theorem | smoiun 8184* | The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.) |
⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) | ||
Theorem | smoiso 8185 | If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐵, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.) |
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → Smo 𝐹) | ||
Theorem | smoel2 8186 | A strictly monotone ordinal function preserves the membership relation. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) | ||
Theorem | smo11 8187 | A strictly monotone ordinal function is one-to-one. (Contributed by Mario Carneiro, 28-Feb-2013.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹) → 𝐹:𝐴–1-1→𝐵) | ||
Theorem | smoord 8188 | A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013.) |
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ∈ 𝐷 ↔ (𝐹‘𝐶) ∈ (𝐹‘𝐷))) | ||
Theorem | smoword 8189 | A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013.) |
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ (𝐹‘𝐶) ⊆ (𝐹‘𝐷))) | ||
Theorem | smogt 8190 | A strictly monotone ordinal function is greater than or equal to its argument. Exercise 1 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 23-Nov-2011.) (Revised by Mario Carneiro, 28-Feb-2013.) |
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝐶 ∈ 𝐴) → 𝐶 ⊆ (𝐹‘𝐶)) | ||
Theorem | smorndom 8191 | The range of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴 ⊆ 𝐵) | ||
Theorem | smoiso2 8192 | The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ⊆ On) → ((𝐹:𝐴–onto→𝐵 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (𝐴, 𝐵))) | ||
Syntax | crecs 8193 | Notation for a function defined by strong transfinite recursion. |
class recs(𝐹) | ||
Definition | df-recs 8194 | Define a function recs(𝐹) on On, the class of ordinal numbers, by transfinite recursion given a rule 𝐹 which sets the next value given all values so far. See df-rdg 8233 for more details on why this definition is desirable. Unlike df-rdg 8233 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See recsfnon 8226 and recsval 8227 for the primary contract of this definition. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Scott Fenton, 3-Aug-2020.) |
⊢ recs(𝐹) = wrecs( E , On, 𝐹) | ||
Theorem | dfrecs3 8195* | The old definition of transfinite recursion. This version is preferred for development, as it demonstrates the properties of transfinite recursion without relying on well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (Proof revised by Scott Fenton, 18-Nov-2024.) |
⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | ||
Theorem | dfrecs3OLD 8196* | Obsolete proof of dfrecs3 8195 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 3-Aug-2020.) |
⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | ||
Theorem | recseq 8197 | Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) | ||
Theorem | nfrecs 8198 | Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥recs(𝐹) | ||
Theorem | tfrlem1 8199* | A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) & ⊢ (𝜑 → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) | ||
Theorem | tfrlem3a 8200* | Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐺 ∈ V ⇒ ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |