Detailed syntax breakdown of Definition df-tayl
| Step | Hyp | Ref
| Expression |
| 1 | | ctayl 26394 |
. 2
class
Tayl |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vf |
. . 3
setvar 𝑓 |
| 4 | | cr 11154 |
. . . 4
class
ℝ |
| 5 | | cc 11153 |
. . . 4
class
ℂ |
| 6 | 4, 5 | cpr 4628 |
. . 3
class {ℝ,
ℂ} |
| 7 | 2 | cv 1539 |
. . . 4
class 𝑠 |
| 8 | | cpm 8867 |
. . . 4
class
↑pm |
| 9 | 5, 7, 8 | co 7431 |
. . 3
class (ℂ
↑pm 𝑠) |
| 10 | | vn |
. . . 4
setvar 𝑛 |
| 11 | | va |
. . . 4
setvar 𝑎 |
| 12 | | cn0 12526 |
. . . . 5
class
ℕ0 |
| 13 | | cpnf 11292 |
. . . . . 6
class
+∞ |
| 14 | 13 | csn 4626 |
. . . . 5
class
{+∞} |
| 15 | 12, 14 | cun 3949 |
. . . 4
class
(ℕ0 ∪ {+∞}) |
| 16 | | vk |
. . . . 5
setvar 𝑘 |
| 17 | | cc0 11155 |
. . . . . . 7
class
0 |
| 18 | 10 | cv 1539 |
. . . . . . 7
class 𝑛 |
| 19 | | cicc 13390 |
. . . . . . 7
class
[,] |
| 20 | 17, 18, 19 | co 7431 |
. . . . . 6
class
(0[,]𝑛) |
| 21 | | cz 12613 |
. . . . . 6
class
ℤ |
| 22 | 20, 21 | cin 3950 |
. . . . 5
class
((0[,]𝑛) ∩
ℤ) |
| 23 | 16 | cv 1539 |
. . . . . . 7
class 𝑘 |
| 24 | 3 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 25 | | cdvn 25899 |
. . . . . . . 8
class
D𝑛 |
| 26 | 7, 24, 25 | co 7431 |
. . . . . . 7
class (𝑠 D𝑛 𝑓) |
| 27 | 23, 26 | cfv 6561 |
. . . . . 6
class ((𝑠 D𝑛 𝑓)‘𝑘) |
| 28 | 27 | cdm 5685 |
. . . . 5
class dom
((𝑠 D𝑛
𝑓)‘𝑘) |
| 29 | 16, 22, 28 | ciin 4992 |
. . . 4
class ∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) |
| 30 | | vx |
. . . . 5
setvar 𝑥 |
| 31 | 30 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 32 | 31 | csn 4626 |
. . . . . 6
class {𝑥} |
| 33 | | ccnfld 21364 |
. . . . . . 7
class
ℂfld |
| 34 | 11 | cv 1539 |
. . . . . . . . . . 11
class 𝑎 |
| 35 | 34, 27 | cfv 6561 |
. . . . . . . . . 10
class (((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) |
| 36 | | cfa 14312 |
. . . . . . . . . . 11
class
! |
| 37 | 23, 36 | cfv 6561 |
. . . . . . . . . 10
class
(!‘𝑘) |
| 38 | | cdiv 11920 |
. . . . . . . . . 10
class
/ |
| 39 | 35, 37, 38 | co 7431 |
. . . . . . . . 9
class ((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) |
| 40 | | cmin 11492 |
. . . . . . . . . . 11
class
− |
| 41 | 31, 34, 40 | co 7431 |
. . . . . . . . . 10
class (𝑥 − 𝑎) |
| 42 | | cexp 14102 |
. . . . . . . . . 10
class
↑ |
| 43 | 41, 23, 42 | co 7431 |
. . . . . . . . 9
class ((𝑥 − 𝑎)↑𝑘) |
| 44 | | cmul 11160 |
. . . . . . . . 9
class
· |
| 45 | 39, 43, 44 | co 7431 |
. . . . . . . 8
class
(((((𝑠
D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)) |
| 46 | 16, 22, 45 | cmpt 5225 |
. . . . . . 7
class (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))) |
| 47 | | ctsu 24134 |
. . . . . . 7
class
tsums |
| 48 | 33, 46, 47 | co 7431 |
. . . . . 6
class
(ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))) |
| 49 | 32, 48 | cxp 5683 |
. . . . 5
class ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑠
D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))) |
| 50 | 30, 5, 49 | ciun 4991 |
. . . 4
class ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))) |
| 51 | 10, 11, 15, 29, 50 | cmpo 7433 |
. . 3
class (𝑛 ∈ (ℕ0
∪ {+∞}), 𝑎 ∈
∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑠
D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))))) |
| 52 | 2, 3, 6, 9, 51 | cmpo 7433 |
. 2
class (𝑠 ∈ {ℝ, ℂ},
𝑓 ∈ (ℂ
↑pm 𝑠)
↦ (𝑛 ∈
(ℕ0 ∪ {+∞}), 𝑎 ∈ ∩
𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑠
D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) |
| 53 | 1, 52 | wceq 1540 |
1
wff Tayl =
(𝑠 ∈ {ℝ,
ℂ}, 𝑓 ∈ (ℂ
↑pm 𝑠)
↦ (𝑛 ∈
(ℕ0 ∪ {+∞}), 𝑎 ∈ ∩
𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑠
D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) |