MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ana Structured version   Visualization version   GIF version

Definition df-ana 25868
Description: Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.)
Assertion
Ref Expression
df-ana Ana = (𝑠 ∈ {ℝ, β„‚} ↦ {𝑓 ∈ (β„‚ ↑pm 𝑠) ∣ βˆ€π‘₯ ∈ dom 𝑓 π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))})
Distinct variable group:   𝑓,𝑠,π‘₯

Detailed syntax breakdown of Definition df-ana
StepHypRef Expression
1 cana 25866 . 2 class Ana
2 vs . . 3 setvar 𝑠
3 cr 11109 . . . 4 class ℝ
4 cc 11108 . . . 4 class β„‚
53, 4cpr 4631 . . 3 class {ℝ, β„‚}
6 vx . . . . . . 7 setvar π‘₯
76cv 1541 . . . . . 6 class π‘₯
8 vf . . . . . . . . . 10 setvar 𝑓
98cv 1541 . . . . . . . . 9 class 𝑓
10 cpnf 11245 . . . . . . . . . 10 class +∞
112cv 1541 . . . . . . . . . . 11 class 𝑠
12 ctayl 25865 . . . . . . . . . . 11 class Tayl
1311, 9, 12co 7409 . . . . . . . . . 10 class (𝑠 Tayl 𝑓)
1410, 7, 13co 7409 . . . . . . . . 9 class (+∞(𝑠 Tayl 𝑓)π‘₯)
159, 14cin 3948 . . . . . . . 8 class (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯))
1615cdm 5677 . . . . . . 7 class dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯))
17 ccnfld 20944 . . . . . . . . . 10 class β„‚fld
18 ctopn 17367 . . . . . . . . . 10 class TopOpen
1917, 18cfv 6544 . . . . . . . . 9 class (TopOpenβ€˜β„‚fld)
20 crest 17366 . . . . . . . . 9 class β†Ύt
2119, 11, 20co 7409 . . . . . . . 8 class ((TopOpenβ€˜β„‚fld) β†Ύt 𝑠)
22 cnt 22521 . . . . . . . 8 class int
2321, 22cfv 6544 . . . . . . 7 class (intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))
2416, 23cfv 6544 . . . . . 6 class ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))
257, 24wcel 2107 . . . . 5 wff π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))
269cdm 5677 . . . . 5 class dom 𝑓
2725, 6, 26wral 3062 . . . 4 wff βˆ€π‘₯ ∈ dom 𝑓 π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))
28 cpm 8821 . . . . 5 class ↑pm
294, 11, 28co 7409 . . . 4 class (β„‚ ↑pm 𝑠)
3027, 8, 29crab 3433 . . 3 class {𝑓 ∈ (β„‚ ↑pm 𝑠) ∣ βˆ€π‘₯ ∈ dom 𝑓 π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))}
312, 5, 30cmpt 5232 . 2 class (𝑠 ∈ {ℝ, β„‚} ↦ {𝑓 ∈ (β„‚ ↑pm 𝑠) ∣ βˆ€π‘₯ ∈ dom 𝑓 π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))})
321, 31wceq 1542 1 wff Ana = (𝑠 ∈ {ℝ, β„‚} ↦ {𝑓 ∈ (β„‚ ↑pm 𝑠) ∣ βˆ€π‘₯ ∈ dom 𝑓 π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator