MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ana Structured version   Visualization version   GIF version

Definition df-ana 26263
Description: Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.)
Assertion
Ref Expression
df-ana Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
Distinct variable group:   𝑓,𝑠,𝑥

Detailed syntax breakdown of Definition df-ana
StepHypRef Expression
1 cana 26261 . 2 class Ana
2 vs . . 3 setvar 𝑠
3 cr 11067 . . . 4 class
4 cc 11066 . . . 4 class
53, 4cpr 4591 . . 3 class {ℝ, ℂ}
6 vx . . . . . . 7 setvar 𝑥
76cv 1539 . . . . . 6 class 𝑥
8 vf . . . . . . . . . 10 setvar 𝑓
98cv 1539 . . . . . . . . 9 class 𝑓
10 cpnf 11205 . . . . . . . . . 10 class +∞
112cv 1539 . . . . . . . . . . 11 class 𝑠
12 ctayl 26260 . . . . . . . . . . 11 class Tayl
1311, 9, 12co 7387 . . . . . . . . . 10 class (𝑠 Tayl 𝑓)
1410, 7, 13co 7387 . . . . . . . . 9 class (+∞(𝑠 Tayl 𝑓)𝑥)
159, 14cin 3913 . . . . . . . 8 class (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))
1615cdm 5638 . . . . . . 7 class dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))
17 ccnfld 21264 . . . . . . . . . 10 class fld
18 ctopn 17384 . . . . . . . . . 10 class TopOpen
1917, 18cfv 6511 . . . . . . . . 9 class (TopOpen‘ℂfld)
20 crest 17383 . . . . . . . . 9 class t
2119, 11, 20co 7387 . . . . . . . 8 class ((TopOpen‘ℂfld) ↾t 𝑠)
22 cnt 22904 . . . . . . . 8 class int
2321, 22cfv 6511 . . . . . . 7 class (int‘((TopOpen‘ℂfld) ↾t 𝑠))
2416, 23cfv 6511 . . . . . 6 class ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
257, 24wcel 2109 . . . . 5 wff 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
269cdm 5638 . . . . 5 class dom 𝑓
2725, 6, 26wral 3044 . . . 4 wff 𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
28 cpm 8800 . . . . 5 class pm
294, 11, 28co 7387 . . . 4 class (ℂ ↑pm 𝑠)
3027, 8, 29crab 3405 . . 3 class {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}
312, 5, 30cmpt 5188 . 2 class (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
321, 31wceq 1540 1 wff Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator