MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ana Structured version   Visualization version   GIF version

Definition df-ana 26261
Description: Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.)
Assertion
Ref Expression
df-ana Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
Distinct variable group:   𝑓,𝑠,𝑥

Detailed syntax breakdown of Definition df-ana
StepHypRef Expression
1 cana 26259 . 2 class Ana
2 vs . . 3 setvar 𝑠
3 cr 11008 . . . 4 class
4 cc 11007 . . . 4 class
53, 4cpr 4579 . . 3 class {ℝ, ℂ}
6 vx . . . . . . 7 setvar 𝑥
76cv 1539 . . . . . 6 class 𝑥
8 vf . . . . . . . . . 10 setvar 𝑓
98cv 1539 . . . . . . . . 9 class 𝑓
10 cpnf 11146 . . . . . . . . . 10 class +∞
112cv 1539 . . . . . . . . . . 11 class 𝑠
12 ctayl 26258 . . . . . . . . . . 11 class Tayl
1311, 9, 12co 7349 . . . . . . . . . 10 class (𝑠 Tayl 𝑓)
1410, 7, 13co 7349 . . . . . . . . 9 class (+∞(𝑠 Tayl 𝑓)𝑥)
159, 14cin 3902 . . . . . . . 8 class (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))
1615cdm 5619 . . . . . . 7 class dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))
17 ccnfld 21261 . . . . . . . . . 10 class fld
18 ctopn 17325 . . . . . . . . . 10 class TopOpen
1917, 18cfv 6482 . . . . . . . . 9 class (TopOpen‘ℂfld)
20 crest 17324 . . . . . . . . 9 class t
2119, 11, 20co 7349 . . . . . . . 8 class ((TopOpen‘ℂfld) ↾t 𝑠)
22 cnt 22902 . . . . . . . 8 class int
2321, 22cfv 6482 . . . . . . 7 class (int‘((TopOpen‘ℂfld) ↾t 𝑠))
2416, 23cfv 6482 . . . . . 6 class ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
257, 24wcel 2109 . . . . 5 wff 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
269cdm 5619 . . . . 5 class dom 𝑓
2725, 6, 26wral 3044 . . . 4 wff 𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
28 cpm 8754 . . . . 5 class pm
294, 11, 28co 7349 . . . 4 class (ℂ ↑pm 𝑠)
3027, 8, 29crab 3394 . . 3 class {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}
312, 5, 30cmpt 5173 . 2 class (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
321, 31wceq 1540 1 wff Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator