Detailed syntax breakdown of Definition df-ana
Step | Hyp | Ref
| Expression |
1 | | cana 25418 |
. 2
class
Ana |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | cr 10801 |
. . . 4
class
ℝ |
4 | | cc 10800 |
. . . 4
class
ℂ |
5 | 3, 4 | cpr 4560 |
. . 3
class {ℝ,
ℂ} |
6 | | vx |
. . . . . . 7
setvar 𝑥 |
7 | 6 | cv 1538 |
. . . . . 6
class 𝑥 |
8 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
9 | 8 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
10 | | cpnf 10937 |
. . . . . . . . . 10
class
+∞ |
11 | 2 | cv 1538 |
. . . . . . . . . . 11
class 𝑠 |
12 | | ctayl 25417 |
. . . . . . . . . . 11
class
Tayl |
13 | 11, 9, 12 | co 7255 |
. . . . . . . . . 10
class (𝑠 Tayl 𝑓) |
14 | 10, 7, 13 | co 7255 |
. . . . . . . . 9
class
(+∞(𝑠 Tayl
𝑓)𝑥) |
15 | 9, 14 | cin 3882 |
. . . . . . . 8
class (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)) |
16 | 15 | cdm 5580 |
. . . . . . 7
class dom
(𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)) |
17 | | ccnfld 20510 |
. . . . . . . . . 10
class
ℂfld |
18 | | ctopn 17049 |
. . . . . . . . . 10
class
TopOpen |
19 | 17, 18 | cfv 6418 |
. . . . . . . . 9
class
(TopOpen‘ℂfld) |
20 | | crest 17048 |
. . . . . . . . 9
class
↾t |
21 | 19, 11, 20 | co 7255 |
. . . . . . . 8
class
((TopOpen‘ℂfld) ↾t 𝑠) |
22 | | cnt 22076 |
. . . . . . . 8
class
int |
23 | 21, 22 | cfv 6418 |
. . . . . . 7
class
(int‘((TopOpen‘ℂfld) ↾t
𝑠)) |
24 | 16, 23 | cfv 6418 |
. . . . . 6
class
((int‘((TopOpen‘ℂfld) ↾t
𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))) |
25 | 7, 24 | wcel 2108 |
. . . . 5
wff 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))) |
26 | 9 | cdm 5580 |
. . . . 5
class dom 𝑓 |
27 | 25, 6, 26 | wral 3063 |
. . . 4
wff
∀𝑥 ∈ dom
𝑓 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))) |
28 | | cpm 8574 |
. . . . 5
class
↑pm |
29 | 4, 11, 28 | co 7255 |
. . . 4
class (ℂ
↑pm 𝑠) |
30 | 27, 8, 29 | crab 3067 |
. . 3
class {𝑓 ∈ (ℂ
↑pm 𝑠)
∣ ∀𝑥 ∈
dom 𝑓 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))} |
31 | 2, 5, 30 | cmpt 5153 |
. 2
class (𝑠 ∈ {ℝ, ℂ}
↦ {𝑓 ∈ (ℂ
↑pm 𝑠)
∣ ∀𝑥 ∈
dom 𝑓 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}) |
32 | 1, 31 | wceq 1539 |
1
wff Ana =
(𝑠 ∈ {ℝ,
ℂ} ↦ {𝑓 ∈
(ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}) |