MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ana Structured version   Visualization version   GIF version

Definition df-ana 26415
Description: Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.)
Assertion
Ref Expression
df-ana Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
Distinct variable group:   𝑓,𝑠,𝑥

Detailed syntax breakdown of Definition df-ana
StepHypRef Expression
1 cana 26413 . 2 class Ana
2 vs . . 3 setvar 𝑠
3 cr 11183 . . . 4 class
4 cc 11182 . . . 4 class
53, 4cpr 4650 . . 3 class {ℝ, ℂ}
6 vx . . . . . . 7 setvar 𝑥
76cv 1536 . . . . . 6 class 𝑥
8 vf . . . . . . . . . 10 setvar 𝑓
98cv 1536 . . . . . . . . 9 class 𝑓
10 cpnf 11321 . . . . . . . . . 10 class +∞
112cv 1536 . . . . . . . . . . 11 class 𝑠
12 ctayl 26412 . . . . . . . . . . 11 class Tayl
1311, 9, 12co 7448 . . . . . . . . . 10 class (𝑠 Tayl 𝑓)
1410, 7, 13co 7448 . . . . . . . . 9 class (+∞(𝑠 Tayl 𝑓)𝑥)
159, 14cin 3975 . . . . . . . 8 class (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))
1615cdm 5700 . . . . . . 7 class dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))
17 ccnfld 21387 . . . . . . . . . 10 class fld
18 ctopn 17481 . . . . . . . . . 10 class TopOpen
1917, 18cfv 6573 . . . . . . . . 9 class (TopOpen‘ℂfld)
20 crest 17480 . . . . . . . . 9 class t
2119, 11, 20co 7448 . . . . . . . 8 class ((TopOpen‘ℂfld) ↾t 𝑠)
22 cnt 23046 . . . . . . . 8 class int
2321, 22cfv 6573 . . . . . . 7 class (int‘((TopOpen‘ℂfld) ↾t 𝑠))
2416, 23cfv 6573 . . . . . 6 class ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
257, 24wcel 2108 . . . . 5 wff 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
269cdm 5700 . . . . 5 class dom 𝑓
2725, 6, 26wral 3067 . . . 4 wff 𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
28 cpm 8885 . . . . 5 class pm
294, 11, 28co 7448 . . . 4 class (ℂ ↑pm 𝑠)
3027, 8, 29crab 3443 . . 3 class {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}
312, 5, 30cmpt 5249 . 2 class (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
321, 31wceq 1537 1 wff Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator