MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ana Structured version   Visualization version   GIF version

Definition df-ana 26315
Description: Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.)
Assertion
Ref Expression
df-ana Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
Distinct variable group:   𝑓,𝑠,𝑥

Detailed syntax breakdown of Definition df-ana
StepHypRef Expression
1 cana 26313 . 2 class Ana
2 vs . . 3 setvar 𝑠
3 cr 11128 . . . 4 class
4 cc 11127 . . . 4 class
53, 4cpr 4603 . . 3 class {ℝ, ℂ}
6 vx . . . . . . 7 setvar 𝑥
76cv 1539 . . . . . 6 class 𝑥
8 vf . . . . . . . . . 10 setvar 𝑓
98cv 1539 . . . . . . . . 9 class 𝑓
10 cpnf 11266 . . . . . . . . . 10 class +∞
112cv 1539 . . . . . . . . . . 11 class 𝑠
12 ctayl 26312 . . . . . . . . . . 11 class Tayl
1311, 9, 12co 7405 . . . . . . . . . 10 class (𝑠 Tayl 𝑓)
1410, 7, 13co 7405 . . . . . . . . 9 class (+∞(𝑠 Tayl 𝑓)𝑥)
159, 14cin 3925 . . . . . . . 8 class (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))
1615cdm 5654 . . . . . . 7 class dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))
17 ccnfld 21315 . . . . . . . . . 10 class fld
18 ctopn 17435 . . . . . . . . . 10 class TopOpen
1917, 18cfv 6531 . . . . . . . . 9 class (TopOpen‘ℂfld)
20 crest 17434 . . . . . . . . 9 class t
2119, 11, 20co 7405 . . . . . . . 8 class ((TopOpen‘ℂfld) ↾t 𝑠)
22 cnt 22955 . . . . . . . 8 class int
2321, 22cfv 6531 . . . . . . 7 class (int‘((TopOpen‘ℂfld) ↾t 𝑠))
2416, 23cfv 6531 . . . . . 6 class ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
257, 24wcel 2108 . . . . 5 wff 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
269cdm 5654 . . . . 5 class dom 𝑓
2725, 6, 26wral 3051 . . . 4 wff 𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
28 cpm 8841 . . . . 5 class pm
294, 11, 28co 7405 . . . 4 class (ℂ ↑pm 𝑠)
3027, 8, 29crab 3415 . . 3 class {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}
312, 5, 30cmpt 5201 . 2 class (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
321, 31wceq 1540 1 wff Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator