MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ana Structured version   Visualization version   GIF version

Definition df-ana 25867
Description: Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.)
Assertion
Ref Expression
df-ana Ana = (𝑠 ∈ {ℝ, β„‚} ↦ {𝑓 ∈ (β„‚ ↑pm 𝑠) ∣ βˆ€π‘₯ ∈ dom 𝑓 π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))})
Distinct variable group:   𝑓,𝑠,π‘₯

Detailed syntax breakdown of Definition df-ana
StepHypRef Expression
1 cana 25865 . 2 class Ana
2 vs . . 3 setvar 𝑠
3 cr 11108 . . . 4 class ℝ
4 cc 11107 . . . 4 class β„‚
53, 4cpr 4630 . . 3 class {ℝ, β„‚}
6 vx . . . . . . 7 setvar π‘₯
76cv 1540 . . . . . 6 class π‘₯
8 vf . . . . . . . . . 10 setvar 𝑓
98cv 1540 . . . . . . . . 9 class 𝑓
10 cpnf 11244 . . . . . . . . . 10 class +∞
112cv 1540 . . . . . . . . . . 11 class 𝑠
12 ctayl 25864 . . . . . . . . . . 11 class Tayl
1311, 9, 12co 7408 . . . . . . . . . 10 class (𝑠 Tayl 𝑓)
1410, 7, 13co 7408 . . . . . . . . 9 class (+∞(𝑠 Tayl 𝑓)π‘₯)
159, 14cin 3947 . . . . . . . 8 class (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯))
1615cdm 5676 . . . . . . 7 class dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯))
17 ccnfld 20943 . . . . . . . . . 10 class β„‚fld
18 ctopn 17366 . . . . . . . . . 10 class TopOpen
1917, 18cfv 6543 . . . . . . . . 9 class (TopOpenβ€˜β„‚fld)
20 crest 17365 . . . . . . . . 9 class β†Ύt
2119, 11, 20co 7408 . . . . . . . 8 class ((TopOpenβ€˜β„‚fld) β†Ύt 𝑠)
22 cnt 22520 . . . . . . . 8 class int
2321, 22cfv 6543 . . . . . . 7 class (intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))
2416, 23cfv 6543 . . . . . 6 class ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))
257, 24wcel 2106 . . . . 5 wff π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))
269cdm 5676 . . . . 5 class dom 𝑓
2725, 6, 26wral 3061 . . . 4 wff βˆ€π‘₯ ∈ dom 𝑓 π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))
28 cpm 8820 . . . . 5 class ↑pm
294, 11, 28co 7408 . . . 4 class (β„‚ ↑pm 𝑠)
3027, 8, 29crab 3432 . . 3 class {𝑓 ∈ (β„‚ ↑pm 𝑠) ∣ βˆ€π‘₯ ∈ dom 𝑓 π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))}
312, 5, 30cmpt 5231 . 2 class (𝑠 ∈ {ℝ, β„‚} ↦ {𝑓 ∈ (β„‚ ↑pm 𝑠) ∣ βˆ€π‘₯ ∈ dom 𝑓 π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))})
321, 31wceq 1541 1 wff Ana = (𝑠 ∈ {ℝ, β„‚} ↦ {𝑓 ∈ (β„‚ ↑pm 𝑠) ∣ βˆ€π‘₯ ∈ dom 𝑓 π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator