MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ana Structured version   Visualization version   GIF version

Definition df-ana 26239
Description: Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.)
Assertion
Ref Expression
df-ana Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
Distinct variable group:   𝑓,𝑠,𝑥

Detailed syntax breakdown of Definition df-ana
StepHypRef Expression
1 cana 26237 . 2 class Ana
2 vs . . 3 setvar 𝑠
3 cr 11043 . . . 4 class
4 cc 11042 . . . 4 class
53, 4cpr 4587 . . 3 class {ℝ, ℂ}
6 vx . . . . . . 7 setvar 𝑥
76cv 1539 . . . . . 6 class 𝑥
8 vf . . . . . . . . . 10 setvar 𝑓
98cv 1539 . . . . . . . . 9 class 𝑓
10 cpnf 11181 . . . . . . . . . 10 class +∞
112cv 1539 . . . . . . . . . . 11 class 𝑠
12 ctayl 26236 . . . . . . . . . . 11 class Tayl
1311, 9, 12co 7369 . . . . . . . . . 10 class (𝑠 Tayl 𝑓)
1410, 7, 13co 7369 . . . . . . . . 9 class (+∞(𝑠 Tayl 𝑓)𝑥)
159, 14cin 3910 . . . . . . . 8 class (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))
1615cdm 5631 . . . . . . 7 class dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥))
17 ccnfld 21240 . . . . . . . . . 10 class fld
18 ctopn 17360 . . . . . . . . . 10 class TopOpen
1917, 18cfv 6499 . . . . . . . . 9 class (TopOpen‘ℂfld)
20 crest 17359 . . . . . . . . 9 class t
2119, 11, 20co 7369 . . . . . . . 8 class ((TopOpen‘ℂfld) ↾t 𝑠)
22 cnt 22880 . . . . . . . 8 class int
2321, 22cfv 6499 . . . . . . 7 class (int‘((TopOpen‘ℂfld) ↾t 𝑠))
2416, 23cfv 6499 . . . . . 6 class ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
257, 24wcel 2109 . . . . 5 wff 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
269cdm 5631 . . . . 5 class dom 𝑓
2725, 6, 26wral 3044 . . . 4 wff 𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))
28 cpm 8777 . . . . 5 class pm
294, 11, 28co 7369 . . . 4 class (ℂ ↑pm 𝑠)
3027, 8, 29crab 3402 . . 3 class {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}
312, 5, 30cmpt 5183 . 2 class (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
321, 31wceq 1540 1 wff Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator