| Step | Hyp | Ref
| Expression |
| 1 | | taylfval.t |
. 2
⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
| 2 | | df-tayl 26396 |
. . . . 5
⊢ Tayl =
(𝑠 ∈ {ℝ,
ℂ}, 𝑓 ∈ (ℂ
↑pm 𝑠)
↦ (𝑛 ∈
(ℕ0 ∪ {+∞}), 𝑎 ∈ ∩
𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑠
D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) |
| 3 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ
↑pm 𝑠)
↦ (𝑛 ∈
(ℕ0 ∪ {+∞}), 𝑎 ∈ ∩
𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑠
D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))))))) |
| 4 | | eqidd 2738 |
. . . . 5
⊢ ((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (ℕ0 ∪
{+∞}) = (ℕ0 ∪ {+∞})) |
| 5 | | oveq12 7440 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹)) |
| 6 | 5 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹)) |
| 7 | 6 | fveq1d 6908 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((𝑠 D𝑛 𝑓)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 8 | 7 | dmeqd 5916 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → dom ((𝑠 D𝑛 𝑓)‘𝑘) = dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 9 | 8 | iineq2dv 5017 |
. . . . 5
⊢ ((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) = ∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 10 | 7 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎)) |
| 11 | 10 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘))) |
| 12 | 11 | oveq1d 7446 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))) |
| 13 | 12 | mpteq2dva 5242 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))) |
| 14 | 13 | oveq2d 7447 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (ℂfld tsums
(𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑠
D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))) |
| 15 | 14 | xpeq2d 5715 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))))) |
| 16 | 15 | iuneq2d 5022 |
. . . . 5
⊢ ((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))) = ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))))) |
| 17 | 4, 9, 16 | mpoeq123dv 7508 |
. . . 4
⊢ ((𝜑 ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝑛 ∈ (ℕ0 ∪
{+∞}), 𝑎 ∈
∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑠
D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪
{+∞}), 𝑎 ∈
∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) |
| 18 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
| 19 | 18 | oveq2d 7447 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm
𝑆)) |
| 20 | | taylfval.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 21 | | cnex 11236 |
. . . . . 6
⊢ ℂ
∈ V |
| 22 | 21 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℂ ∈
V) |
| 23 | | taylfval.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 24 | | taylfval.a |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| 25 | | elpm2r 8885 |
. . . . 5
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
| 26 | 22, 20, 23, 24, 25 | syl22anc 839 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
| 27 | | nn0ex 12532 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 28 | | snex 5436 |
. . . . . . 7
⊢
{+∞} ∈ V |
| 29 | 27, 28 | unex 7764 |
. . . . . 6
⊢
(ℕ0 ∪ {+∞}) ∈ V |
| 30 | | 0xr 11308 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
| 31 | | nn0ssre 12530 |
. . . . . . . . . . . . 13
⊢
ℕ0 ⊆ ℝ |
| 32 | | ressxr 11305 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℝ* |
| 33 | 31, 32 | sstri 3993 |
. . . . . . . . . . . 12
⊢
ℕ0 ⊆ ℝ* |
| 34 | | pnfxr 11315 |
. . . . . . . . . . . . 13
⊢ +∞
∈ ℝ* |
| 35 | | snssi 4808 |
. . . . . . . . . . . . 13
⊢ (+∞
∈ ℝ* → {+∞} ⊆
ℝ*) |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
{+∞} ⊆ ℝ* |
| 37 | 33, 36 | unssi 4191 |
. . . . . . . . . . 11
⊢
(ℕ0 ∪ {+∞}) ⊆
ℝ* |
| 38 | 37 | sseli 3979 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (ℕ0
∪ {+∞}) → 𝑛
∈ ℝ*) |
| 39 | | elun 4153 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (ℕ0
∪ {+∞}) ↔ (𝑛
∈ ℕ0 ∨ 𝑛 ∈ {+∞})) |
| 40 | | nn0ge0 12551 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ 0 ≤ 𝑛) |
| 41 | | 0lepnf 13175 |
. . . . . . . . . . . . 13
⊢ 0 ≤
+∞ |
| 42 | | elsni 4643 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {+∞} → 𝑛 = +∞) |
| 43 | 41, 42 | breqtrrid 5181 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {+∞} → 0 ≤
𝑛) |
| 44 | 40, 43 | jaoi 858 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0 ∨
𝑛 ∈ {+∞}) →
0 ≤ 𝑛) |
| 45 | 39, 44 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (ℕ0
∪ {+∞}) → 0 ≤ 𝑛) |
| 46 | | lbicc2 13504 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 𝑛 ∈ ℝ* ∧ 0 ≤
𝑛) → 0 ∈
(0[,]𝑛)) |
| 47 | 30, 38, 45, 46 | mp3an2i 1468 |
. . . . . . . . 9
⊢ (𝑛 ∈ (ℕ0
∪ {+∞}) → 0 ∈ (0[,]𝑛)) |
| 48 | | 0z 12624 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
| 49 | | inelcm 4465 |
. . . . . . . . 9
⊢ ((0
∈ (0[,]𝑛) ∧ 0
∈ ℤ) → ((0[,]𝑛) ∩ ℤ) ≠
∅) |
| 50 | 47, 48, 49 | sylancl 586 |
. . . . . . . 8
⊢ (𝑛 ∈ (ℕ0
∪ {+∞}) → ((0[,]𝑛) ∩ ℤ) ≠
∅) |
| 51 | | fvex 6919 |
. . . . . . . . . 10
⊢ ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V |
| 52 | 51 | dmex 7931 |
. . . . . . . . 9
⊢ dom
((𝑆 D𝑛
𝐹)‘𝑘) ∈ V |
| 53 | 52 | rgenw 3065 |
. . . . . . . 8
⊢
∀𝑘 ∈
((0[,]𝑛) ∩ ℤ)dom
((𝑆 D𝑛
𝐹)‘𝑘) ∈ V |
| 54 | | iinexg 5348 |
. . . . . . . 8
⊢
((((0[,]𝑛) ∩
ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → ∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) |
| 55 | 50, 53, 54 | sylancl 586 |
. . . . . . 7
⊢ (𝑛 ∈ (ℕ0
∪ {+∞}) → ∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) |
| 56 | 55 | rgen 3063 |
. . . . . 6
⊢
∀𝑛 ∈
(ℕ0 ∪ {+∞})∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V |
| 57 | | eqid 2737 |
. . . . . . 7
⊢ (𝑛 ∈ (ℕ0
∪ {+∞}), 𝑎 ∈
∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪
{+∞}), 𝑎 ∈
∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))))) |
| 58 | 57 | mpoexxg 8100 |
. . . . . 6
⊢
(((ℕ0 ∪ {+∞}) ∈ V ∧ ∀𝑛 ∈ (ℕ0
∪ {+∞})∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → (𝑛 ∈ (ℕ0 ∪
{+∞}), 𝑎 ∈
∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))))) ∈ V) |
| 59 | 29, 56, 58 | mp2an 692 |
. . . . 5
⊢ (𝑛 ∈ (ℕ0
∪ {+∞}), 𝑎 ∈
∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))))) ∈ V |
| 60 | 59 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ (ℕ0 ∪
{+∞}), 𝑎 ∈
∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))))) ∈ V) |
| 61 | 3, 17, 19, 20, 26, 60 | ovmpodx 7584 |
. . 3
⊢ (𝜑 → (𝑆 Tayl 𝐹) = (𝑛 ∈ (ℕ0 ∪
{+∞}), 𝑎 ∈
∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) |
| 62 | | simprl 771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → 𝑛 = 𝑁) |
| 63 | 62 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → (0[,]𝑛) = (0[,]𝑁)) |
| 64 | 63 | ineq1d 4219 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ)) |
| 65 | | simprr 773 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → 𝑎 = 𝐵) |
| 66 | 65 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵)) |
| 67 | 66 | oveq1d 7446 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘))) |
| 68 | 65 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → (𝑥 − 𝑎) = (𝑥 − 𝐵)) |
| 69 | 68 | oveq1d 7446 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → ((𝑥 − 𝑎)↑𝑘) = ((𝑥 − 𝐵)↑𝑘)) |
| 70 | 67, 69 | oveq12d 7449 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))) |
| 71 | 64, 70 | mpteq12dv 5233 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) |
| 72 | 71 | oveq2d 7447 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → (ℂfld tsums
(𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) |
| 73 | 72 | xpeq2d 5715 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) |
| 74 | 73 | iuneq2d 5022 |
. . 3
⊢ ((𝜑 ∧ (𝑛 = 𝑁 ∧ 𝑎 = 𝐵)) → ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))) = ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) |
| 75 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) |
| 76 | 75 | oveq2d 7447 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → (0[,]𝑛) = (0[,]𝑁)) |
| 77 | 76 | ineq1d 4219 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ)) |
| 78 | | iineq1 5009 |
. . . 4
⊢
(((0[,]𝑛) ∩
ℤ) = ((0[,]𝑁) ∩
ℤ) → ∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = ∩ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 79 | 77, 78 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → ∩
𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = ∩ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 80 | | taylfval.n |
. . . . 5
⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
| 81 | | pnfex 11314 |
. . . . . . 7
⊢ +∞
∈ V |
| 82 | 81 | elsn2 4665 |
. . . . . 6
⊢ (𝑁 ∈ {+∞} ↔ 𝑁 = +∞) |
| 83 | 82 | orbi2i 913 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0 ∨
𝑁 ∈ {+∞}) ↔
(𝑁 ∈
ℕ0 ∨ 𝑁
= +∞)) |
| 84 | 80, 83 | sylibr 234 |
. . . 4
⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 ∈
{+∞})) |
| 85 | | elun 4153 |
. . . 4
⊢ (𝑁 ∈ (ℕ0
∪ {+∞}) ↔ (𝑁
∈ ℕ0 ∨ 𝑁 ∈ {+∞})) |
| 86 | 84, 85 | sylibr 234 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℕ0 ∪
{+∞})) |
| 87 | | taylfval.b |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 88 | 87 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 89 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (0[,]𝑛) = (0[,]𝑁)) |
| 90 | 89 | ineq1d 4219 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ)) |
| 91 | 90 | neeq1d 3000 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (((0[,]𝑛) ∩ ℤ) ≠ ∅ ↔
((0[,]𝑁) ∩ ℤ)
≠ ∅)) |
| 92 | 91, 50 | vtoclga 3577 |
. . . . . . 7
⊢ (𝑁 ∈ (ℕ0
∪ {+∞}) → ((0[,]𝑁) ∩ ℤ) ≠
∅) |
| 93 | 86, 92 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((0[,]𝑁) ∩ ℤ) ≠
∅) |
| 94 | | r19.2z 4495 |
. . . . . 6
⊢
((((0[,]𝑁) ∩
ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 95 | 93, 88, 94 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 96 | | elex 3501 |
. . . . . 6
⊢ (𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) → 𝐵 ∈ V) |
| 97 | 96 | rexlimivw 3151 |
. . . . 5
⊢
(∃𝑘 ∈
((0[,]𝑁) ∩
ℤ)𝐵 ∈ dom
((𝑆 D𝑛
𝐹)‘𝑘) → 𝐵 ∈ V) |
| 98 | | eliin 4996 |
. . . . 5
⊢ (𝐵 ∈ V → (𝐵 ∈ ∩ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))) |
| 99 | 95, 97, 98 | 3syl 18 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ ∩
𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))) |
| 100 | 88, 99 | mpbird 257 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ∩
𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 101 | | snssi 4808 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → {𝑥} ⊆
ℂ) |
| 102 | 20, 23, 24, 80, 87 | taylfvallem 26399 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) →
(ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) ⊆ ℂ) |
| 103 | | xpss12 5700 |
. . . . . . 7
⊢ (({𝑥} ⊆ ℂ ∧
(ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) ⊆ ℂ) → ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) ⊆ (ℂ ×
ℂ)) |
| 104 | 101, 102,
103 | syl2an2 686 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) ⊆ (ℂ ×
ℂ)) |
| 105 | 104 | ralrimiva 3146 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) ⊆ (ℂ ×
ℂ)) |
| 106 | | iunss 5045 |
. . . . 5
⊢ (∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) ⊆ (ℂ × ℂ)
↔ ∀𝑥 ∈
ℂ ({𝑥} ×
(ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) ⊆ (ℂ ×
ℂ)) |
| 107 | 105, 106 | sylibr 234 |
. . . 4
⊢ (𝜑 → ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) ⊆ (ℂ ×
ℂ)) |
| 108 | 21, 21 | xpex 7773 |
. . . . 5
⊢ (ℂ
× ℂ) ∈ V |
| 109 | 108 | ssex 5321 |
. . . 4
⊢ (∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) ⊆ (ℂ × ℂ)
→ ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) ∈ V) |
| 110 | 107, 109 | syl 17 |
. . 3
⊢ (𝜑 → ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘))))) ∈ V) |
| 111 | 61, 74, 79, 86, 100, 110 | ovmpodx 7584 |
. 2
⊢ (𝜑 → (𝑁(𝑆 Tayl 𝐹)𝐵) = ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) |
| 112 | 1, 111 | eqtrid 2789 |
1
⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦
(((((𝑆
D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) |