MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylfval Structured version   Visualization version   GIF version

Theorem taylfval 24941
Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally or ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥.

This "extended" version of taylpfval 24947 additionally handles the case 𝑁 = +∞, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.)

Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylfval (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥   𝑘,𝑁,𝑥   𝑆,𝑘,𝑥   𝑥,𝑇
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝑇(𝑘)

Proof of Theorem taylfval
Dummy variables 𝑎 𝑛 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylfval.t . 2 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
2 df-tayl 24937 . . . . 5 Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
32a1i 11 . . . 4 (𝜑 → Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))))
4 eqidd 2822 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℕ0 ∪ {+∞}) = (ℕ0 ∪ {+∞}))
5 oveq12 7159 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
65ad2antlr 725 . . . . . . . 8 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
76fveq1d 6667 . . . . . . 7 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((𝑠 D𝑛 𝑓)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘))
87dmeqd 5769 . . . . . 6 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → dom ((𝑠 D𝑛 𝑓)‘𝑘) = dom ((𝑆 D𝑛 𝐹)‘𝑘))
98iineq2dv 4937 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) = 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
107fveq1d 6667 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎))
1110oveq1d 7165 . . . . . . . . . 10 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)))
1211oveq1d 7165 . . . . . . . . 9 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))
1312mpteq2dva 5154 . . . . . . . 8 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))
1413oveq2d 7166 . . . . . . 7 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))
1514xpeq2d 5580 . . . . . 6 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
1615iuneq2d 4941 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
174, 9, 16mpoeq123dv 7223 . . . 4 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
18 simpr 487 . . . . 5 ((𝜑𝑠 = 𝑆) → 𝑠 = 𝑆)
1918oveq2d 7166 . . . 4 ((𝜑𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
20 taylfval.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
21 cnex 10612 . . . . . 6 ℂ ∈ V
2221a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
23 taylfval.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
24 taylfval.a . . . . 5 (𝜑𝐴𝑆)
25 elpm2r 8418 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2622, 20, 23, 24, 25syl22anc 836 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
27 nn0ex 11897 . . . . . . 7 0 ∈ V
28 snex 5324 . . . . . . 7 {+∞} ∈ V
2927, 28unex 7463 . . . . . 6 (ℕ0 ∪ {+∞}) ∈ V
30 0xr 10682 . . . . . . . . . 10 0 ∈ ℝ*
31 nn0ssre 11895 . . . . . . . . . . . . 13 0 ⊆ ℝ
32 ressxr 10679 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
3331, 32sstri 3976 . . . . . . . . . . . 12 0 ⊆ ℝ*
34 pnfxr 10689 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
35 snssi 4735 . . . . . . . . . . . . 13 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
3634, 35ax-mp 5 . . . . . . . . . . . 12 {+∞} ⊆ ℝ*
3733, 36unssi 4161 . . . . . . . . . . 11 (ℕ0 ∪ {+∞}) ⊆ ℝ*
3837sseli 3963 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 𝑛 ∈ ℝ*)
39 elun 4125 . . . . . . . . . . 11 (𝑛 ∈ (ℕ0 ∪ {+∞}) ↔ (𝑛 ∈ ℕ0𝑛 ∈ {+∞}))
40 nn0ge0 11916 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → 0 ≤ 𝑛)
41 0lepnf 12521 . . . . . . . . . . . . 13 0 ≤ +∞
42 elsni 4578 . . . . . . . . . . . . 13 (𝑛 ∈ {+∞} → 𝑛 = +∞)
4341, 42breqtrrid 5097 . . . . . . . . . . . 12 (𝑛 ∈ {+∞} → 0 ≤ 𝑛)
4440, 43jaoi 853 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑛 ∈ {+∞}) → 0 ≤ 𝑛)
4539, 44sylbi 219 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ≤ 𝑛)
46 lbicc2 12846 . . . . . . . . . 10 ((0 ∈ ℝ*𝑛 ∈ ℝ* ∧ 0 ≤ 𝑛) → 0 ∈ (0[,]𝑛))
4730, 38, 45, 46mp3an2i 1462 . . . . . . . . 9 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ∈ (0[,]𝑛))
48 0z 11986 . . . . . . . . 9 0 ∈ ℤ
49 inelcm 4414 . . . . . . . . 9 ((0 ∈ (0[,]𝑛) ∧ 0 ∈ ℤ) → ((0[,]𝑛) ∩ ℤ) ≠ ∅)
5047, 48, 49sylancl 588 . . . . . . . 8 (𝑛 ∈ (ℕ0 ∪ {+∞}) → ((0[,]𝑛) ∩ ℤ) ≠ ∅)
51 fvex 6678 . . . . . . . . . 10 ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
5251dmex 7610 . . . . . . . . 9 dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
5352rgenw 3150 . . . . . . . 8 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
54 iinexg 5237 . . . . . . . 8 ((((0[,]𝑛) ∩ ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V)
5550, 53, 54sylancl 588 . . . . . . 7 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V)
5655rgen 3148 . . . . . 6 𝑛 ∈ (ℕ0 ∪ {+∞}) 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
57 eqid 2821 . . . . . . 7 (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
5857mpoexxg 7767 . . . . . 6 (((ℕ0 ∪ {+∞}) ∈ V ∧ ∀𝑛 ∈ (ℕ0 ∪ {+∞}) 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V)
5929, 56, 58mp2an 690 . . . . 5 (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V
6059a1i 11 . . . 4 (𝜑 → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V)
613, 17, 19, 20, 26, 60ovmpodx 7295 . . 3 (𝜑 → (𝑆 Tayl 𝐹) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
62 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑛 = 𝑁)
6362oveq2d 7166 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (0[,]𝑛) = (0[,]𝑁))
6463ineq1d 4188 . . . . . . 7 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
65 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑎 = 𝐵)
6665fveq2d 6669 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵))
6766oveq1d 7165 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)))
6865oveq2d 7166 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (𝑥𝑎) = (𝑥𝐵))
6968oveq1d 7165 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((𝑥𝑎)↑𝑘) = ((𝑥𝐵)↑𝑘))
7067, 69oveq12d 7168 . . . . . . 7 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
7164, 70mpteq12dv 5144 . . . . . 6 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
7271oveq2d 7166 . . . . 5 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
7372xpeq2d 5580 . . . 4 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
7473iuneq2d 4941 . . 3 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
75 simpr 487 . . . . . 6 ((𝜑𝑛 = 𝑁) → 𝑛 = 𝑁)
7675oveq2d 7166 . . . . 5 ((𝜑𝑛 = 𝑁) → (0[,]𝑛) = (0[,]𝑁))
7776ineq1d 4188 . . . 4 ((𝜑𝑛 = 𝑁) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
78 iineq1 4929 . . . 4 (((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
7977, 78syl 17 . . 3 ((𝜑𝑛 = 𝑁) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
80 taylfval.n . . . . 5 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
81 pnfex 10688 . . . . . . 7 +∞ ∈ V
8281elsn2 4598 . . . . . 6 (𝑁 ∈ {+∞} ↔ 𝑁 = +∞)
8382orbi2i 909 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ {+∞}) ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
8480, 83sylibr 236 . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝑁 ∈ {+∞}))
85 elun 4125 . . . 4 (𝑁 ∈ (ℕ0 ∪ {+∞}) ↔ (𝑁 ∈ ℕ0𝑁 ∈ {+∞}))
8684, 85sylibr 236 . . 3 (𝜑𝑁 ∈ (ℕ0 ∪ {+∞}))
87 taylfval.b . . . . 5 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
8887ralrimiva 3182 . . . 4 (𝜑 → ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
89 oveq2 7158 . . . . . . . . . 10 (𝑛 = 𝑁 → (0[,]𝑛) = (0[,]𝑁))
9089ineq1d 4188 . . . . . . . . 9 (𝑛 = 𝑁 → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
9190neeq1d 3075 . . . . . . . 8 (𝑛 = 𝑁 → (((0[,]𝑛) ∩ ℤ) ≠ ∅ ↔ ((0[,]𝑁) ∩ ℤ) ≠ ∅))
9291, 50vtoclga 3574 . . . . . . 7 (𝑁 ∈ (ℕ0 ∪ {+∞}) → ((0[,]𝑁) ∩ ℤ) ≠ ∅)
9386, 92syl 17 . . . . . 6 (𝜑 → ((0[,]𝑁) ∩ ℤ) ≠ ∅)
94 r19.2z 4440 . . . . . 6 ((((0[,]𝑁) ∩ ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9593, 88, 94syl2anc 586 . . . . 5 (𝜑 → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
96 elex 3513 . . . . . 6 (𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) → 𝐵 ∈ V)
9796rexlimivw 3282 . . . . 5 (∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) → 𝐵 ∈ V)
98 eliin 4917 . . . . 5 (𝐵 ∈ V → (𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)))
9995, 97, 983syl 18 . . . 4 (𝜑 → (𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)))
10088, 99mpbird 259 . . 3 (𝜑𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
101 snssi 4735 . . . . . . 7 (𝑥 ∈ ℂ → {𝑥} ⊆ ℂ)
10220, 23, 24, 80, 87taylfvallem 24940 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ)
103 xpss12 5565 . . . . . . 7 (({𝑥} ⊆ ℂ ∧ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
104101, 102, 103syl2an2 684 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
105104ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
106 iunss 4962 . . . . 5 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) ↔ ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
107105, 106sylibr 236 . . . 4 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
10821, 21xpex 7470 . . . . 5 (ℂ × ℂ) ∈ V
109108ssex 5218 . . . 4 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ∈ V)
110107, 109syl 17 . . 3 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ∈ V)
11161, 74, 79, 86, 100, 110ovmpodx 7295 . 2 (𝜑 → (𝑁(𝑆 Tayl 𝐹)𝐵) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
1121, 111syl5eq 2868 1 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3495  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4561  {cpr 4563   ciun 4912   ciin 4913   class class class wbr 5059  cmpt 5139   × cxp 5548  dom cdm 5550  wf 6346  cfv 6350  (class class class)co 7150  cmpo 7152  pm cpm 8401  cc 10529  cr 10530  0cc0 10531   · cmul 10536  +∞cpnf 10666  *cxr 10668  cle 10670  cmin 10864   / cdiv 11291  0cn0 11891  cz 11975  [,]cicc 12735  cexp 13423  !cfa 13627  fldccnfld 20539   tsums ctsu 22728   D𝑛 cdvn 24456   Tayl ctayl 24935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-fac 13628  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cnp 21830  df-haus 21917  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-tsms 22729  df-xms 22924  df-ms 22925  df-limc 24458  df-dv 24459  df-dvn 24460  df-tayl 24937
This theorem is referenced by:  eltayl  24942  taylf  24943  taylpfval  24947
  Copyright terms: Public domain W3C validator