MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylfval Structured version   Visualization version   GIF version

Theorem taylfval 26266
Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally or ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥.

This "extended" version of taylpfval 26272 additionally handles the case 𝑁 = +∞, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.)

Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylfval (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥   𝑘,𝑁,𝑥   𝑆,𝑘,𝑥   𝑥,𝑇
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝑇(𝑘)

Proof of Theorem taylfval
Dummy variables 𝑎 𝑛 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylfval.t . 2 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
2 df-tayl 26262 . . . . 5 Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
32a1i 11 . . . 4 (𝜑 → Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))))
4 eqidd 2730 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℕ0 ∪ {+∞}) = (ℕ0 ∪ {+∞}))
5 oveq12 7396 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
65ad2antlr 727 . . . . . . . 8 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
76fveq1d 6860 . . . . . . 7 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((𝑠 D𝑛 𝑓)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘))
87dmeqd 5869 . . . . . 6 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → dom ((𝑠 D𝑛 𝑓)‘𝑘) = dom ((𝑆 D𝑛 𝐹)‘𝑘))
98iineq2dv 4981 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) = 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
107fveq1d 6860 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎))
1110oveq1d 7402 . . . . . . . . . 10 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)))
1211oveq1d 7402 . . . . . . . . 9 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))
1312mpteq2dva 5200 . . . . . . . 8 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))
1413oveq2d 7403 . . . . . . 7 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))
1514xpeq2d 5668 . . . . . 6 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
1615iuneq2d 4986 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
174, 9, 16mpoeq123dv 7464 . . . 4 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
18 simpr 484 . . . . 5 ((𝜑𝑠 = 𝑆) → 𝑠 = 𝑆)
1918oveq2d 7403 . . . 4 ((𝜑𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
20 taylfval.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
21 cnex 11149 . . . . . 6 ℂ ∈ V
2221a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
23 taylfval.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
24 taylfval.a . . . . 5 (𝜑𝐴𝑆)
25 elpm2r 8818 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2622, 20, 23, 24, 25syl22anc 838 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
27 nn0ex 12448 . . . . . . 7 0 ∈ V
28 snex 5391 . . . . . . 7 {+∞} ∈ V
2927, 28unex 7720 . . . . . 6 (ℕ0 ∪ {+∞}) ∈ V
30 0xr 11221 . . . . . . . . . 10 0 ∈ ℝ*
31 nn0ssre 12446 . . . . . . . . . . . . 13 0 ⊆ ℝ
32 ressxr 11218 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
3331, 32sstri 3956 . . . . . . . . . . . 12 0 ⊆ ℝ*
34 pnfxr 11228 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
35 snssi 4772 . . . . . . . . . . . . 13 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
3634, 35ax-mp 5 . . . . . . . . . . . 12 {+∞} ⊆ ℝ*
3733, 36unssi 4154 . . . . . . . . . . 11 (ℕ0 ∪ {+∞}) ⊆ ℝ*
3837sseli 3942 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 𝑛 ∈ ℝ*)
39 elun 4116 . . . . . . . . . . 11 (𝑛 ∈ (ℕ0 ∪ {+∞}) ↔ (𝑛 ∈ ℕ0𝑛 ∈ {+∞}))
40 nn0ge0 12467 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → 0 ≤ 𝑛)
41 0lepnf 13093 . . . . . . . . . . . . 13 0 ≤ +∞
42 elsni 4606 . . . . . . . . . . . . 13 (𝑛 ∈ {+∞} → 𝑛 = +∞)
4341, 42breqtrrid 5145 . . . . . . . . . . . 12 (𝑛 ∈ {+∞} → 0 ≤ 𝑛)
4440, 43jaoi 857 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑛 ∈ {+∞}) → 0 ≤ 𝑛)
4539, 44sylbi 217 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ≤ 𝑛)
46 lbicc2 13425 . . . . . . . . . 10 ((0 ∈ ℝ*𝑛 ∈ ℝ* ∧ 0 ≤ 𝑛) → 0 ∈ (0[,]𝑛))
4730, 38, 45, 46mp3an2i 1468 . . . . . . . . 9 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ∈ (0[,]𝑛))
48 0z 12540 . . . . . . . . 9 0 ∈ ℤ
49 inelcm 4428 . . . . . . . . 9 ((0 ∈ (0[,]𝑛) ∧ 0 ∈ ℤ) → ((0[,]𝑛) ∩ ℤ) ≠ ∅)
5047, 48, 49sylancl 586 . . . . . . . 8 (𝑛 ∈ (ℕ0 ∪ {+∞}) → ((0[,]𝑛) ∩ ℤ) ≠ ∅)
51 fvex 6871 . . . . . . . . . 10 ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
5251dmex 7885 . . . . . . . . 9 dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
5352rgenw 3048 . . . . . . . 8 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
54 iinexg 5303 . . . . . . . 8 ((((0[,]𝑛) ∩ ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V)
5550, 53, 54sylancl 586 . . . . . . 7 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V)
5655rgen 3046 . . . . . 6 𝑛 ∈ (ℕ0 ∪ {+∞}) 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
57 eqid 2729 . . . . . . 7 (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
5857mpoexxg 8054 . . . . . 6 (((ℕ0 ∪ {+∞}) ∈ V ∧ ∀𝑛 ∈ (ℕ0 ∪ {+∞}) 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V)
5929, 56, 58mp2an 692 . . . . 5 (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V
6059a1i 11 . . . 4 (𝜑 → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V)
613, 17, 19, 20, 26, 60ovmpodx 7540 . . 3 (𝜑 → (𝑆 Tayl 𝐹) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
62 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑛 = 𝑁)
6362oveq2d 7403 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (0[,]𝑛) = (0[,]𝑁))
6463ineq1d 4182 . . . . . . 7 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
65 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑎 = 𝐵)
6665fveq2d 6862 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵))
6766oveq1d 7402 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)))
6865oveq2d 7403 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (𝑥𝑎) = (𝑥𝐵))
6968oveq1d 7402 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((𝑥𝑎)↑𝑘) = ((𝑥𝐵)↑𝑘))
7067, 69oveq12d 7405 . . . . . . 7 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
7164, 70mpteq12dv 5194 . . . . . 6 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
7271oveq2d 7403 . . . . 5 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
7372xpeq2d 5668 . . . 4 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
7473iuneq2d 4986 . . 3 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
75 simpr 484 . . . . . 6 ((𝜑𝑛 = 𝑁) → 𝑛 = 𝑁)
7675oveq2d 7403 . . . . 5 ((𝜑𝑛 = 𝑁) → (0[,]𝑛) = (0[,]𝑁))
7776ineq1d 4182 . . . 4 ((𝜑𝑛 = 𝑁) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
78 iineq1 4973 . . . 4 (((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
7977, 78syl 17 . . 3 ((𝜑𝑛 = 𝑁) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
80 taylfval.n . . . . 5 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
81 pnfex 11227 . . . . . . 7 +∞ ∈ V
8281elsn2 4629 . . . . . 6 (𝑁 ∈ {+∞} ↔ 𝑁 = +∞)
8382orbi2i 912 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ {+∞}) ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
8480, 83sylibr 234 . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝑁 ∈ {+∞}))
85 elun 4116 . . . 4 (𝑁 ∈ (ℕ0 ∪ {+∞}) ↔ (𝑁 ∈ ℕ0𝑁 ∈ {+∞}))
8684, 85sylibr 234 . . 3 (𝜑𝑁 ∈ (ℕ0 ∪ {+∞}))
87 taylfval.b . . . . 5 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
8887ralrimiva 3125 . . . 4 (𝜑 → ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
89 oveq2 7395 . . . . . . . . . 10 (𝑛 = 𝑁 → (0[,]𝑛) = (0[,]𝑁))
9089ineq1d 4182 . . . . . . . . 9 (𝑛 = 𝑁 → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
9190neeq1d 2984 . . . . . . . 8 (𝑛 = 𝑁 → (((0[,]𝑛) ∩ ℤ) ≠ ∅ ↔ ((0[,]𝑁) ∩ ℤ) ≠ ∅))
9291, 50vtoclga 3543 . . . . . . 7 (𝑁 ∈ (ℕ0 ∪ {+∞}) → ((0[,]𝑁) ∩ ℤ) ≠ ∅)
9386, 92syl 17 . . . . . 6 (𝜑 → ((0[,]𝑁) ∩ ℤ) ≠ ∅)
94 r19.2z 4458 . . . . . 6 ((((0[,]𝑁) ∩ ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9593, 88, 94syl2anc 584 . . . . 5 (𝜑 → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
96 elex 3468 . . . . . 6 (𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) → 𝐵 ∈ V)
9796rexlimivw 3130 . . . . 5 (∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) → 𝐵 ∈ V)
98 eliin 4960 . . . . 5 (𝐵 ∈ V → (𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)))
9995, 97, 983syl 18 . . . 4 (𝜑 → (𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)))
10088, 99mpbird 257 . . 3 (𝜑𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
101 snssi 4772 . . . . . . 7 (𝑥 ∈ ℂ → {𝑥} ⊆ ℂ)
10220, 23, 24, 80, 87taylfvallem 26265 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ)
103 xpss12 5653 . . . . . . 7 (({𝑥} ⊆ ℂ ∧ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
104101, 102, 103syl2an2 686 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
105104ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
106 iunss 5009 . . . . 5 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) ↔ ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
107105, 106sylibr 234 . . . 4 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
10821, 21xpex 7729 . . . . 5 (ℂ × ℂ) ∈ V
109108ssex 5276 . . . 4 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ∈ V)
110107, 109syl 17 . . 3 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ∈ V)
11161, 74, 79, 86, 100, 110ovmpodx 7540 . 2 (𝜑 → (𝑁(𝑆 Tayl 𝐹)𝐵) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
1121, 111eqtrid 2776 1 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  {cpr 4591   ciun 4955   ciin 4956   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  pm cpm 8800  cc 11066  cr 11067  0cc0 11068   · cmul 11073  +∞cpnf 11205  *cxr 11207  cle 11209  cmin 11405   / cdiv 11835  0cn0 12442  cz 12529  [,]cicc 13309  cexp 14026  !cfa 14238  fldccnfld 21264   tsums ctsu 24013   D𝑛 cdvn 25765   Tayl ctayl 26260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-fac 14239  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144  df-cring 20145  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cnp 23115  df-haus 23202  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-tsms 24014  df-xms 24208  df-ms 24209  df-limc 25767  df-dv 25768  df-dvn 25769  df-tayl 26262
This theorem is referenced by:  eltayl  26267  taylf  26268  taylpfval  26272
  Copyright terms: Public domain W3C validator