MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylfval Structured version   Visualization version   GIF version

Theorem taylfval 25423
Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally or ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥.

This "extended" version of taylpfval 25429 additionally handles the case 𝑁 = +∞, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.)

Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylfval (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥   𝑘,𝑁,𝑥   𝑆,𝑘,𝑥   𝑥,𝑇
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝑇(𝑘)

Proof of Theorem taylfval
Dummy variables 𝑎 𝑛 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylfval.t . 2 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
2 df-tayl 25419 . . . . 5 Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
32a1i 11 . . . 4 (𝜑 → Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))))
4 eqidd 2739 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℕ0 ∪ {+∞}) = (ℕ0 ∪ {+∞}))
5 oveq12 7264 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
65ad2antlr 723 . . . . . . . 8 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
76fveq1d 6758 . . . . . . 7 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((𝑠 D𝑛 𝑓)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘))
87dmeqd 5803 . . . . . 6 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → dom ((𝑠 D𝑛 𝑓)‘𝑘) = dom ((𝑆 D𝑛 𝐹)‘𝑘))
98iineq2dv 4946 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) = 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
107fveq1d 6758 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎))
1110oveq1d 7270 . . . . . . . . . 10 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)))
1211oveq1d 7270 . . . . . . . . 9 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))
1312mpteq2dva 5170 . . . . . . . 8 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))
1413oveq2d 7271 . . . . . . 7 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))
1514xpeq2d 5610 . . . . . 6 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
1615iuneq2d 4950 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
174, 9, 16mpoeq123dv 7328 . . . 4 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
18 simpr 484 . . . . 5 ((𝜑𝑠 = 𝑆) → 𝑠 = 𝑆)
1918oveq2d 7271 . . . 4 ((𝜑𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
20 taylfval.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
21 cnex 10883 . . . . . 6 ℂ ∈ V
2221a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
23 taylfval.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
24 taylfval.a . . . . 5 (𝜑𝐴𝑆)
25 elpm2r 8591 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2622, 20, 23, 24, 25syl22anc 835 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
27 nn0ex 12169 . . . . . . 7 0 ∈ V
28 snex 5349 . . . . . . 7 {+∞} ∈ V
2927, 28unex 7574 . . . . . 6 (ℕ0 ∪ {+∞}) ∈ V
30 0xr 10953 . . . . . . . . . 10 0 ∈ ℝ*
31 nn0ssre 12167 . . . . . . . . . . . . 13 0 ⊆ ℝ
32 ressxr 10950 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
3331, 32sstri 3926 . . . . . . . . . . . 12 0 ⊆ ℝ*
34 pnfxr 10960 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
35 snssi 4738 . . . . . . . . . . . . 13 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
3634, 35ax-mp 5 . . . . . . . . . . . 12 {+∞} ⊆ ℝ*
3733, 36unssi 4115 . . . . . . . . . . 11 (ℕ0 ∪ {+∞}) ⊆ ℝ*
3837sseli 3913 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 𝑛 ∈ ℝ*)
39 elun 4079 . . . . . . . . . . 11 (𝑛 ∈ (ℕ0 ∪ {+∞}) ↔ (𝑛 ∈ ℕ0𝑛 ∈ {+∞}))
40 nn0ge0 12188 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → 0 ≤ 𝑛)
41 0lepnf 12797 . . . . . . . . . . . . 13 0 ≤ +∞
42 elsni 4575 . . . . . . . . . . . . 13 (𝑛 ∈ {+∞} → 𝑛 = +∞)
4341, 42breqtrrid 5108 . . . . . . . . . . . 12 (𝑛 ∈ {+∞} → 0 ≤ 𝑛)
4440, 43jaoi 853 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑛 ∈ {+∞}) → 0 ≤ 𝑛)
4539, 44sylbi 216 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ≤ 𝑛)
46 lbicc2 13125 . . . . . . . . . 10 ((0 ∈ ℝ*𝑛 ∈ ℝ* ∧ 0 ≤ 𝑛) → 0 ∈ (0[,]𝑛))
4730, 38, 45, 46mp3an2i 1464 . . . . . . . . 9 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ∈ (0[,]𝑛))
48 0z 12260 . . . . . . . . 9 0 ∈ ℤ
49 inelcm 4395 . . . . . . . . 9 ((0 ∈ (0[,]𝑛) ∧ 0 ∈ ℤ) → ((0[,]𝑛) ∩ ℤ) ≠ ∅)
5047, 48, 49sylancl 585 . . . . . . . 8 (𝑛 ∈ (ℕ0 ∪ {+∞}) → ((0[,]𝑛) ∩ ℤ) ≠ ∅)
51 fvex 6769 . . . . . . . . . 10 ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
5251dmex 7732 . . . . . . . . 9 dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
5352rgenw 3075 . . . . . . . 8 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
54 iinexg 5260 . . . . . . . 8 ((((0[,]𝑛) ∩ ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V)
5550, 53, 54sylancl 585 . . . . . . 7 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V)
5655rgen 3073 . . . . . 6 𝑛 ∈ (ℕ0 ∪ {+∞}) 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
57 eqid 2738 . . . . . . 7 (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
5857mpoexxg 7889 . . . . . 6 (((ℕ0 ∪ {+∞}) ∈ V ∧ ∀𝑛 ∈ (ℕ0 ∪ {+∞}) 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V)
5929, 56, 58mp2an 688 . . . . 5 (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V
6059a1i 11 . . . 4 (𝜑 → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V)
613, 17, 19, 20, 26, 60ovmpodx 7402 . . 3 (𝜑 → (𝑆 Tayl 𝐹) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
62 simprl 767 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑛 = 𝑁)
6362oveq2d 7271 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (0[,]𝑛) = (0[,]𝑁))
6463ineq1d 4142 . . . . . . 7 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
65 simprr 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑎 = 𝐵)
6665fveq2d 6760 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵))
6766oveq1d 7270 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)))
6865oveq2d 7271 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (𝑥𝑎) = (𝑥𝐵))
6968oveq1d 7270 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((𝑥𝑎)↑𝑘) = ((𝑥𝐵)↑𝑘))
7067, 69oveq12d 7273 . . . . . . 7 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
7164, 70mpteq12dv 5161 . . . . . 6 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
7271oveq2d 7271 . . . . 5 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
7372xpeq2d 5610 . . . 4 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
7473iuneq2d 4950 . . 3 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
75 simpr 484 . . . . . 6 ((𝜑𝑛 = 𝑁) → 𝑛 = 𝑁)
7675oveq2d 7271 . . . . 5 ((𝜑𝑛 = 𝑁) → (0[,]𝑛) = (0[,]𝑁))
7776ineq1d 4142 . . . 4 ((𝜑𝑛 = 𝑁) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
78 iineq1 4938 . . . 4 (((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
7977, 78syl 17 . . 3 ((𝜑𝑛 = 𝑁) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
80 taylfval.n . . . . 5 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
81 pnfex 10959 . . . . . . 7 +∞ ∈ V
8281elsn2 4597 . . . . . 6 (𝑁 ∈ {+∞} ↔ 𝑁 = +∞)
8382orbi2i 909 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ {+∞}) ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
8480, 83sylibr 233 . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝑁 ∈ {+∞}))
85 elun 4079 . . . 4 (𝑁 ∈ (ℕ0 ∪ {+∞}) ↔ (𝑁 ∈ ℕ0𝑁 ∈ {+∞}))
8684, 85sylibr 233 . . 3 (𝜑𝑁 ∈ (ℕ0 ∪ {+∞}))
87 taylfval.b . . . . 5 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
8887ralrimiva 3107 . . . 4 (𝜑 → ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
89 oveq2 7263 . . . . . . . . . 10 (𝑛 = 𝑁 → (0[,]𝑛) = (0[,]𝑁))
9089ineq1d 4142 . . . . . . . . 9 (𝑛 = 𝑁 → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
9190neeq1d 3002 . . . . . . . 8 (𝑛 = 𝑁 → (((0[,]𝑛) ∩ ℤ) ≠ ∅ ↔ ((0[,]𝑁) ∩ ℤ) ≠ ∅))
9291, 50vtoclga 3503 . . . . . . 7 (𝑁 ∈ (ℕ0 ∪ {+∞}) → ((0[,]𝑁) ∩ ℤ) ≠ ∅)
9386, 92syl 17 . . . . . 6 (𝜑 → ((0[,]𝑁) ∩ ℤ) ≠ ∅)
94 r19.2z 4422 . . . . . 6 ((((0[,]𝑁) ∩ ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9593, 88, 94syl2anc 583 . . . . 5 (𝜑 → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
96 elex 3440 . . . . . 6 (𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) → 𝐵 ∈ V)
9796rexlimivw 3210 . . . . 5 (∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) → 𝐵 ∈ V)
98 eliin 4926 . . . . 5 (𝐵 ∈ V → (𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)))
9995, 97, 983syl 18 . . . 4 (𝜑 → (𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)))
10088, 99mpbird 256 . . 3 (𝜑𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
101 snssi 4738 . . . . . . 7 (𝑥 ∈ ℂ → {𝑥} ⊆ ℂ)
10220, 23, 24, 80, 87taylfvallem 25422 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ)
103 xpss12 5595 . . . . . . 7 (({𝑥} ⊆ ℂ ∧ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
104101, 102, 103syl2an2 682 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
105104ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
106 iunss 4971 . . . . 5 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) ↔ ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
107105, 106sylibr 233 . . . 4 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
10821, 21xpex 7581 . . . . 5 (ℂ × ℂ) ∈ V
109108ssex 5240 . . . 4 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ∈ V)
110107, 109syl 17 . . 3 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ∈ V)
11161, 74, 79, 86, 100, 110ovmpodx 7402 . 2 (𝜑 → (𝑁(𝑆 Tayl 𝐹)𝐵) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
1121, 111syl5eq 2791 1 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  {cpr 4560   ciun 4921   ciin 4922   class class class wbr 5070  cmpt 5153   × cxp 5578  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  pm cpm 8574  cc 10800  cr 10801  0cc0 10802   · cmul 10807  +∞cpnf 10937  *cxr 10939  cle 10941  cmin 11135   / cdiv 11562  0cn0 12163  cz 12249  [,]cicc 13011  cexp 13710  !cfa 13915  fldccnfld 20510   tsums ctsu 23185   D𝑛 cdvn 24933   Tayl ctayl 25417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cnp 22287  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tsms 23186  df-xms 23381  df-ms 23382  df-limc 24935  df-dv 24936  df-dvn 24937  df-tayl 25419
This theorem is referenced by:  eltayl  25424  taylf  25425  taylpfval  25429
  Copyright terms: Public domain W3C validator