MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-toset Structured version   Visualization version   GIF version

Definition df-toset 18374
Description: Define the class of totally ordered sets (tosets). (Contributed by FL, 17-Nov-2014.)
Assertion
Ref Expression
df-toset Toset = {𝑓 ∈ Poset ∣ [(Baseβ€˜π‘“) / 𝑏][(leβ€˜π‘“) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)}
Distinct variable group:   𝑓,𝑏,π‘Ÿ,π‘₯,𝑦

Detailed syntax breakdown of Definition df-toset
StepHypRef Expression
1 ctos 18373 . 2 class Toset
2 vx . . . . . . . . . 10 setvar π‘₯
32cv 1540 . . . . . . . . 9 class π‘₯
4 vy . . . . . . . . . 10 setvar 𝑦
54cv 1540 . . . . . . . . 9 class 𝑦
6 vr . . . . . . . . . 10 setvar π‘Ÿ
76cv 1540 . . . . . . . . 9 class π‘Ÿ
83, 5, 7wbr 5148 . . . . . . . 8 wff π‘₯π‘Ÿπ‘¦
95, 3, 7wbr 5148 . . . . . . . 8 wff π‘¦π‘Ÿπ‘₯
108, 9wo 845 . . . . . . 7 wff (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)
11 vb . . . . . . . 8 setvar 𝑏
1211cv 1540 . . . . . . 7 class 𝑏
1310, 4, 12wral 3061 . . . . . 6 wff βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)
1413, 2, 12wral 3061 . . . . 5 wff βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)
15 vf . . . . . . 7 setvar 𝑓
1615cv 1540 . . . . . 6 class 𝑓
17 cple 17208 . . . . . 6 class le
1816, 17cfv 6543 . . . . 5 class (leβ€˜π‘“)
1914, 6, 18wsbc 3777 . . . 4 wff [(leβ€˜π‘“) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)
20 cbs 17148 . . . . 5 class Base
2116, 20cfv 6543 . . . 4 class (Baseβ€˜π‘“)
2219, 11, 21wsbc 3777 . . 3 wff [(Baseβ€˜π‘“) / 𝑏][(leβ€˜π‘“) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)
23 cpo 18264 . . 3 class Poset
2422, 15, 23crab 3432 . 2 class {𝑓 ∈ Poset ∣ [(Baseβ€˜π‘“) / 𝑏][(leβ€˜π‘“) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)}
251, 24wceq 1541 1 wff Toset = {𝑓 ∈ Poset ∣ [(Baseβ€˜π‘“) / 𝑏][(leβ€˜π‘“) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)}
Colors of variables: wff setvar class
This definition is referenced by:  istos  18375
  Copyright terms: Public domain W3C validator