Detailed syntax breakdown of Definition df-toset
| Step | Hyp | Ref
| Expression |
| 1 | | ctos 18461 |
. 2
class
Toset |
| 2 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 4 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 5 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 6 | | vr |
. . . . . . . . . 10
setvar 𝑟 |
| 7 | 6 | cv 1539 |
. . . . . . . . 9
class 𝑟 |
| 8 | 3, 5, 7 | wbr 5143 |
. . . . . . . 8
wff 𝑥𝑟𝑦 |
| 9 | 5, 3, 7 | wbr 5143 |
. . . . . . . 8
wff 𝑦𝑟𝑥 |
| 10 | 8, 9 | wo 848 |
. . . . . . 7
wff (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) |
| 11 | | vb |
. . . . . . . 8
setvar 𝑏 |
| 12 | 11 | cv 1539 |
. . . . . . 7
class 𝑏 |
| 13 | 10, 4, 12 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) |
| 14 | 13, 2, 12 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) |
| 15 | | vf |
. . . . . . 7
setvar 𝑓 |
| 16 | 15 | cv 1539 |
. . . . . 6
class 𝑓 |
| 17 | | cple 17304 |
. . . . . 6
class
le |
| 18 | 16, 17 | cfv 6561 |
. . . . 5
class
(le‘𝑓) |
| 19 | 14, 6, 18 | wsbc 3788 |
. . . 4
wff
[(le‘𝑓)
/ 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) |
| 20 | | cbs 17247 |
. . . . 5
class
Base |
| 21 | 16, 20 | cfv 6561 |
. . . 4
class
(Base‘𝑓) |
| 22 | 19, 11, 21 | wsbc 3788 |
. . 3
wff
[(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) |
| 23 | | cpo 18353 |
. . 3
class
Poset |
| 24 | 22, 15, 23 | crab 3436 |
. 2
class {𝑓 ∈ Poset ∣
[(Base‘𝑓) /
𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥)} |
| 25 | 1, 24 | wceq 1540 |
1
wff Toset =
{𝑓 ∈ Poset ∣
[(Base‘𝑓) /
𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥)} |