MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istos Structured version   Visualization version   GIF version

Theorem istos 18463
Description: The predicate "is a toset". (Contributed by FL, 17-Nov-2014.)
Hypotheses
Ref Expression
istos.b 𝐵 = (Base‘𝐾)
istos.l = (le‘𝐾)
Assertion
Ref Expression
istos (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥, ,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem istos
Dummy variables 𝑓 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . 4 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
2 fveq2 6906 . . . . 5 (𝑓 = 𝐾 → (le‘𝑓) = (le‘𝐾))
32sbceq1d 3793 . . . 4 (𝑓 = 𝐾 → ([(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ [(le‘𝐾) / 𝑟]𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥)))
41, 3sbceqbid 3795 . . 3 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ [(Base‘𝐾) / 𝑏][(le‘𝐾) / 𝑟]𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥)))
5 fvex 6919 . . . 4 (Base‘𝐾) ∈ V
6 fvex 6919 . . . 4 (le‘𝐾) ∈ V
7 istos.b . . . . . 6 𝐵 = (Base‘𝐾)
8 eqtr 2760 . . . . . . . . 9 ((𝑏 = (Base‘𝐾) ∧ (Base‘𝐾) = 𝐵) → 𝑏 = 𝐵)
9 istos.l . . . . . . . . . 10 = (le‘𝐾)
10 eqtr 2760 . . . . . . . . . . . . 13 ((𝑟 = (le‘𝐾) ∧ (le‘𝐾) = ) → 𝑟 = )
11 breq 5145 . . . . . . . . . . . . . . . . 17 (𝑟 = → (𝑥𝑟𝑦𝑥 𝑦))
12 breq 5145 . . . . . . . . . . . . . . . . 17 (𝑟 = → (𝑦𝑟𝑥𝑦 𝑥))
1311, 12orbi12d 919 . . . . . . . . . . . . . . . 16 (𝑟 = → ((𝑥𝑟𝑦𝑦𝑟𝑥) ↔ (𝑥 𝑦𝑦 𝑥)))
14132ralbidv 3221 . . . . . . . . . . . . . . 15 (𝑟 = → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝑏𝑦𝑏 (𝑥 𝑦𝑦 𝑥)))
15 raleq 3323 . . . . . . . . . . . . . . . 16 (𝑏 = 𝐵 → (∀𝑦𝑏 (𝑥 𝑦𝑦 𝑥) ↔ ∀𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
1615raleqbi1dv 3338 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏 (𝑥 𝑦𝑦 𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
1714, 16sylan9bb 509 . . . . . . . . . . . . . 14 ((𝑟 = 𝑏 = 𝐵) → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
1817ex 412 . . . . . . . . . . . . 13 (𝑟 = → (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))))
1910, 18syl 17 . . . . . . . . . . . 12 ((𝑟 = (le‘𝐾) ∧ (le‘𝐾) = ) → (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))))
2019expcom 413 . . . . . . . . . . 11 ((le‘𝐾) = → (𝑟 = (le‘𝐾) → (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))))
2120eqcoms 2745 . . . . . . . . . 10 ( = (le‘𝐾) → (𝑟 = (le‘𝐾) → (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))))
229, 21ax-mp 5 . . . . . . . . 9 (𝑟 = (le‘𝐾) → (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))))
238, 22syl5com 31 . . . . . . . 8 ((𝑏 = (Base‘𝐾) ∧ (Base‘𝐾) = 𝐵) → (𝑟 = (le‘𝐾) → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))))
2423expcom 413 . . . . . . 7 ((Base‘𝐾) = 𝐵 → (𝑏 = (Base‘𝐾) → (𝑟 = (le‘𝐾) → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))))
2524eqcoms 2745 . . . . . 6 (𝐵 = (Base‘𝐾) → (𝑏 = (Base‘𝐾) → (𝑟 = (le‘𝐾) → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))))
267, 25ax-mp 5 . . . . 5 (𝑏 = (Base‘𝐾) → (𝑟 = (le‘𝐾) → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))))
2726imp 406 . . . 4 ((𝑏 = (Base‘𝐾) ∧ 𝑟 = (le‘𝐾)) → (∀𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
285, 6, 27sbc2ie 3866 . . 3 ([(Base‘𝐾) / 𝑏][(le‘𝐾) / 𝑟]𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))
294, 28bitrdi 287 . 2 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
30 df-toset 18462 . 2 Toset = {𝑓 ∈ Poset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥)}
3129, 30elrab2 3695 1 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  [wsbc 3788   class class class wbr 5143  cfv 6561  Basecbs 17247  lecple 17304  Posetcpo 18353  Tosetctos 18461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-toset 18462
This theorem is referenced by:  tosso  18464  tospos  18465  tleile  18466  zntoslem  21575  resstos  32957  odutos  32958  xrstos  33012  xrge0omnd  33088
  Copyright terms: Public domain W3C validator