MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istos Structured version   Visualization version   GIF version

Theorem istos 18371
Description: The predicate "is a toset". (Contributed by FL, 17-Nov-2014.)
Hypotheses
Ref Expression
istos.b 𝐡 = (Baseβ€˜πΎ)
istos.l ≀ = (leβ€˜πΎ)
Assertion
Ref Expression
istos (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯, ≀ ,𝑦
Allowed substitution hints:   𝐾(π‘₯,𝑦)

Proof of Theorem istos
Dummy variables 𝑓 𝑏 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . 4 (𝑓 = 𝐾 β†’ (Baseβ€˜π‘“) = (Baseβ€˜πΎ))
2 fveq2 6892 . . . . 5 (𝑓 = 𝐾 β†’ (leβ€˜π‘“) = (leβ€˜πΎ))
32sbceq1d 3783 . . . 4 (𝑓 = 𝐾 β†’ ([(leβ€˜π‘“) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ [(leβ€˜πΎ) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)))
41, 3sbceqbid 3785 . . 3 (𝑓 = 𝐾 β†’ ([(Baseβ€˜π‘“) / 𝑏][(leβ€˜π‘“) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ [(Baseβ€˜πΎ) / 𝑏][(leβ€˜πΎ) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)))
5 fvex 6905 . . . 4 (Baseβ€˜πΎ) ∈ V
6 fvex 6905 . . . 4 (leβ€˜πΎ) ∈ V
7 istos.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
8 eqtr 2756 . . . . . . . . 9 ((𝑏 = (Baseβ€˜πΎ) ∧ (Baseβ€˜πΎ) = 𝐡) β†’ 𝑏 = 𝐡)
9 istos.l . . . . . . . . . 10 ≀ = (leβ€˜πΎ)
10 eqtr 2756 . . . . . . . . . . . . 13 ((π‘Ÿ = (leβ€˜πΎ) ∧ (leβ€˜πΎ) = ≀ ) β†’ π‘Ÿ = ≀ )
11 breq 5151 . . . . . . . . . . . . . . . . 17 (π‘Ÿ = ≀ β†’ (π‘₯π‘Ÿπ‘¦ ↔ π‘₯ ≀ 𝑦))
12 breq 5151 . . . . . . . . . . . . . . . . 17 (π‘Ÿ = ≀ β†’ (π‘¦π‘Ÿπ‘₯ ↔ 𝑦 ≀ π‘₯))
1311, 12orbi12d 918 . . . . . . . . . . . . . . . 16 (π‘Ÿ = ≀ β†’ ((π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))
14132ralbidv 3219 . . . . . . . . . . . . . . 15 (π‘Ÿ = ≀ β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))
15 raleq 3323 . . . . . . . . . . . . . . . 16 (𝑏 = 𝐡 β†’ (βˆ€π‘¦ ∈ 𝑏 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯) ↔ βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))
1615raleqbi1dv 3334 . . . . . . . . . . . . . . 15 (𝑏 = 𝐡 β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))
1714, 16sylan9bb 511 . . . . . . . . . . . . . 14 ((π‘Ÿ = ≀ ∧ 𝑏 = 𝐡) β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))
1817ex 414 . . . . . . . . . . . . 13 (π‘Ÿ = ≀ β†’ (𝑏 = 𝐡 β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯))))
1910, 18syl 17 . . . . . . . . . . . 12 ((π‘Ÿ = (leβ€˜πΎ) ∧ (leβ€˜πΎ) = ≀ ) β†’ (𝑏 = 𝐡 β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯))))
2019expcom 415 . . . . . . . . . . 11 ((leβ€˜πΎ) = ≀ β†’ (π‘Ÿ = (leβ€˜πΎ) β†’ (𝑏 = 𝐡 β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))))
2120eqcoms 2741 . . . . . . . . . 10 ( ≀ = (leβ€˜πΎ) β†’ (π‘Ÿ = (leβ€˜πΎ) β†’ (𝑏 = 𝐡 β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))))
229, 21ax-mp 5 . . . . . . . . 9 (π‘Ÿ = (leβ€˜πΎ) β†’ (𝑏 = 𝐡 β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯))))
238, 22syl5com 31 . . . . . . . 8 ((𝑏 = (Baseβ€˜πΎ) ∧ (Baseβ€˜πΎ) = 𝐡) β†’ (π‘Ÿ = (leβ€˜πΎ) β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯))))
2423expcom 415 . . . . . . 7 ((Baseβ€˜πΎ) = 𝐡 β†’ (𝑏 = (Baseβ€˜πΎ) β†’ (π‘Ÿ = (leβ€˜πΎ) β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))))
2524eqcoms 2741 . . . . . 6 (𝐡 = (Baseβ€˜πΎ) β†’ (𝑏 = (Baseβ€˜πΎ) β†’ (π‘Ÿ = (leβ€˜πΎ) β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))))
267, 25ax-mp 5 . . . . 5 (𝑏 = (Baseβ€˜πΎ) β†’ (π‘Ÿ = (leβ€˜πΎ) β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯))))
2726imp 408 . . . 4 ((𝑏 = (Baseβ€˜πΎ) ∧ π‘Ÿ = (leβ€˜πΎ)) β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))
285, 6, 27sbc2ie 3861 . . 3 ([(Baseβ€˜πΎ) / 𝑏][(leβ€˜πΎ) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯))
294, 28bitrdi 287 . 2 (𝑓 = 𝐾 β†’ ([(Baseβ€˜π‘“) / 𝑏][(leβ€˜π‘“) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))
30 df-toset 18370 . 2 Toset = {𝑓 ∈ Poset ∣ [(Baseβ€˜π‘“) / 𝑏][(leβ€˜π‘“) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)}
3129, 30elrab2 3687 1 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  [wsbc 3778   class class class wbr 5149  β€˜cfv 6544  Basecbs 17144  lecple 17204  Posetcpo 18260  Tosetctos 18369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-toset 18370
This theorem is referenced by:  tosso  18372  tospos  18373  tleile  18374  zntoslem  21112  resstos  32137  odutos  32138  xrstos  32180  xrge0omnd  32229
  Copyright terms: Public domain W3C validator