Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . 4
⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) |
2 | | fveq2 6756 |
. . . . 5
⊢ (𝑓 = 𝐾 → (le‘𝑓) = (le‘𝐾)) |
3 | 2 | sbceq1d 3716 |
. . . 4
⊢ (𝑓 = 𝐾 → ([(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ [(le‘𝐾) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥))) |
4 | 1, 3 | sbceqbid 3718 |
. . 3
⊢ (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ [(Base‘𝐾) / 𝑏][(le‘𝐾) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥))) |
5 | | fvex 6769 |
. . . 4
⊢
(Base‘𝐾)
∈ V |
6 | | fvex 6769 |
. . . 4
⊢
(le‘𝐾) ∈
V |
7 | | istos.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
8 | | eqtr 2761 |
. . . . . . . . 9
⊢ ((𝑏 = (Base‘𝐾) ∧ (Base‘𝐾) = 𝐵) → 𝑏 = 𝐵) |
9 | | istos.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
10 | | eqtr 2761 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = (le‘𝐾) ∧ (le‘𝐾) = ≤ ) → 𝑟 = ≤ ) |
11 | | breq 5072 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = ≤ → (𝑥𝑟𝑦 ↔ 𝑥 ≤ 𝑦)) |
12 | | breq 5072 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = ≤ → (𝑦𝑟𝑥 ↔ 𝑦 ≤ 𝑥)) |
13 | 11, 12 | orbi12d 915 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ≤ → ((𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
14 | 13 | 2ralbidv 3122 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ≤ → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
15 | | raleq 3333 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
16 | 15 | raleqbi1dv 3331 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
17 | 14, 16 | sylan9bb 509 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 = ≤ ∧ 𝑏 = 𝐵) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
18 | 17 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝑟 = ≤ → (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)))) |
19 | 10, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑟 = (le‘𝐾) ∧ (le‘𝐾) = ≤ ) → (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)))) |
20 | 19 | expcom 413 |
. . . . . . . . . . 11
⊢
((le‘𝐾) =
≤
→ (𝑟 = (le‘𝐾) → (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))))) |
21 | 20 | eqcoms 2746 |
. . . . . . . . . 10
⊢ ( ≤ =
(le‘𝐾) → (𝑟 = (le‘𝐾) → (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))))) |
22 | 9, 21 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑟 = (le‘𝐾) → (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)))) |
23 | 8, 22 | syl5com 31 |
. . . . . . . 8
⊢ ((𝑏 = (Base‘𝐾) ∧ (Base‘𝐾) = 𝐵) → (𝑟 = (le‘𝐾) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)))) |
24 | 23 | expcom 413 |
. . . . . . 7
⊢
((Base‘𝐾) =
𝐵 → (𝑏 = (Base‘𝐾) → (𝑟 = (le‘𝐾) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))))) |
25 | 24 | eqcoms 2746 |
. . . . . 6
⊢ (𝐵 = (Base‘𝐾) → (𝑏 = (Base‘𝐾) → (𝑟 = (le‘𝐾) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))))) |
26 | 7, 25 | ax-mp 5 |
. . . . 5
⊢ (𝑏 = (Base‘𝐾) → (𝑟 = (le‘𝐾) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)))) |
27 | 26 | imp 406 |
. . . 4
⊢ ((𝑏 = (Base‘𝐾) ∧ 𝑟 = (le‘𝐾)) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
28 | 5, 6, 27 | sbc2ie 3795 |
. . 3
⊢
([(Base‘𝐾) / 𝑏][(le‘𝐾) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
29 | 4, 28 | bitrdi 286 |
. 2
⊢ (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
30 | | df-toset 18050 |
. 2
⊢ Toset =
{𝑓 ∈ Poset ∣
[(Base‘𝑓) /
𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥)} |
31 | 29, 30 | elrab2 3620 |
1
⊢ (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |