Detailed syntax breakdown of Definition df-totbnd
| Step | Hyp | Ref
| Expression |
| 1 | | ctotbnd 37773 |
. 2
class
TotBnd |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
| 5 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑣 |
| 6 | 5 | cuni 4907 |
. . . . . . . 8
class ∪ 𝑣 |
| 7 | 2 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 8 | 6, 7 | wceq 1540 |
. . . . . . 7
wff ∪ 𝑣 =
𝑥 |
| 9 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
| 10 | 9 | cv 1539 |
. . . . . . . . . 10
class 𝑏 |
| 11 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 12 | 11 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 13 | | vd |
. . . . . . . . . . . 12
setvar 𝑑 |
| 14 | 13 | cv 1539 |
. . . . . . . . . . 11
class 𝑑 |
| 15 | | vm |
. . . . . . . . . . . . 13
setvar 𝑚 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . . 12
class 𝑚 |
| 17 | | cbl 21351 |
. . . . . . . . . . . 12
class
ball |
| 18 | 16, 17 | cfv 6561 |
. . . . . . . . . . 11
class
(ball‘𝑚) |
| 19 | 12, 14, 18 | co 7431 |
. . . . . . . . . 10
class (𝑦(ball‘𝑚)𝑑) |
| 20 | 10, 19 | wceq 1540 |
. . . . . . . . 9
wff 𝑏 = (𝑦(ball‘𝑚)𝑑) |
| 21 | 20, 11, 7 | wrex 3070 |
. . . . . . . 8
wff
∃𝑦 ∈
𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑) |
| 22 | 21, 9, 5 | wral 3061 |
. . . . . . 7
wff
∀𝑏 ∈
𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑) |
| 23 | 8, 22 | wa 395 |
. . . . . 6
wff (∪ 𝑣 =
𝑥 ∧ ∀𝑏 ∈ 𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑)) |
| 24 | | cfn 8985 |
. . . . . 6
class
Fin |
| 25 | 23, 4, 24 | wrex 3070 |
. . . . 5
wff
∃𝑣 ∈ Fin
(∪ 𝑣 = 𝑥 ∧ ∀𝑏 ∈ 𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑)) |
| 26 | | crp 13034 |
. . . . 5
class
ℝ+ |
| 27 | 25, 13, 26 | wral 3061 |
. . . 4
wff
∀𝑑 ∈
ℝ+ ∃𝑣 ∈ Fin (∪
𝑣 = 𝑥 ∧ ∀𝑏 ∈ 𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑)) |
| 28 | | cmet 21350 |
. . . . 5
class
Met |
| 29 | 7, 28 | cfv 6561 |
. . . 4
class
(Met‘𝑥) |
| 30 | 27, 15, 29 | crab 3436 |
. . 3
class {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑑 ∈ ℝ+
∃𝑣 ∈ Fin (∪ 𝑣 =
𝑥 ∧ ∀𝑏 ∈ 𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑))} |
| 31 | 2, 3, 30 | cmpt 5225 |
. 2
class (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑑 ∈ ℝ+
∃𝑣 ∈ Fin (∪ 𝑣 =
𝑥 ∧ ∀𝑏 ∈ 𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑))}) |
| 32 | 1, 31 | wceq 1540 |
1
wff TotBnd =
(𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑑 ∈ ℝ+
∃𝑣 ∈ Fin (∪ 𝑣 =
𝑥 ∧ ∀𝑏 ∈ 𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑))}) |