| Step | Hyp | Ref
| Expression |
| 1 | | elfvex 6944 |
. 2
⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑋 ∈ V) |
| 2 | | elfvex 6944 |
. . 3
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑋 ∈ V) |
| 3 | 2 | adantr 480 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+
∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) → 𝑋 ∈ V) |
| 4 | | fveq2 6906 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (Met‘𝑦) = (Met‘𝑋)) |
| 5 | | eqeq2 2749 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → (∪ 𝑣 = 𝑦 ↔ ∪ 𝑣 = 𝑋)) |
| 6 | | rexeq 3322 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑋 → (∃𝑥 ∈ 𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))) |
| 7 | 6 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → (∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))) |
| 8 | 5, 7 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → ((∪ 𝑣 = 𝑦 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)))) |
| 9 | 8 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (∃𝑣 ∈ Fin (∪
𝑣 = 𝑦 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∃𝑣 ∈ Fin (∪
𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)))) |
| 10 | 9 | ralbidv 3178 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑦 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)))) |
| 11 | 4, 10 | rabeqbidv 3455 |
. . . . 5
⊢ (𝑦 = 𝑋 → {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑦 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑))} = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))}) |
| 12 | | df-totbnd 37775 |
. . . . 5
⊢ TotBnd =
(𝑦 ∈ V ↦ {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑑 ∈ ℝ+
∃𝑣 ∈ Fin (∪ 𝑣 =
𝑦 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑))}) |
| 13 | | fvex 6919 |
. . . . . 6
⊢
(Met‘𝑋) ∈
V |
| 14 | 13 | rabex 5339 |
. . . . 5
⊢ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+
∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))} ∈ V |
| 15 | 11, 12, 14 | fvmpt 7016 |
. . . 4
⊢ (𝑋 ∈ V →
(TotBnd‘𝑋) = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+
∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))}) |
| 16 | 15 | eleq2d 2827 |
. . 3
⊢ (𝑋 ∈ V → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))})) |
| 17 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (ball‘𝑚) = (ball‘𝑀)) |
| 18 | 17 | oveqd 7448 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (𝑥(ball‘𝑚)𝑑) = (𝑥(ball‘𝑀)𝑑)) |
| 19 | 18 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → (𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
| 20 | 19 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
| 21 | 20 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
| 22 | 21 | anbi2d 630 |
. . . . . 6
⊢ (𝑚 = 𝑀 → ((∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 23 | 22 | rexbidv 3179 |
. . . . 5
⊢ (𝑚 = 𝑀 → (∃𝑣 ∈ Fin (∪
𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∃𝑣 ∈ Fin (∪
𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 24 | 23 | ralbidv 3178 |
. . . 4
⊢ (𝑚 = 𝑀 → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 25 | 24 | elrab 3692 |
. . 3
⊢ (𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))} ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 26 | 16, 25 | bitrdi 287 |
. 2
⊢ (𝑋 ∈ V → (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))) |
| 27 | 1, 3, 26 | pm5.21nii 378 |
1
⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |