Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd Structured version   Visualization version   GIF version

Theorem istotbnd 37763
Description: The predicate "is a totally bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
istotbnd (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Distinct variable groups:   𝑏,𝑑,𝑣,𝑥,𝑀   𝑋,𝑏,𝑑,𝑣,𝑥

Proof of Theorem istotbnd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6896 . 2 (𝑀 ∈ (TotBnd‘𝑋) → 𝑋 ∈ V)
2 elfvex 6896 . . 3 (𝑀 ∈ (Met‘𝑋) → 𝑋 ∈ V)
32adantr 480 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) → 𝑋 ∈ V)
4 fveq2 6858 . . . . . 6 (𝑦 = 𝑋 → (Met‘𝑦) = (Met‘𝑋))
5 eqeq2 2741 . . . . . . . . 9 (𝑦 = 𝑋 → ( 𝑣 = 𝑦 𝑣 = 𝑋))
6 rexeq 3295 . . . . . . . . . 10 (𝑦 = 𝑋 → (∃𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)))
76ralbidv 3156 . . . . . . . . 9 (𝑦 = 𝑋 → (∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)))
85, 7anbi12d 632 . . . . . . . 8 (𝑦 = 𝑋 → (( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
98rexbidv 3157 . . . . . . 7 (𝑦 = 𝑋 → (∃𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
109ralbidv 3156 . . . . . 6 (𝑦 = 𝑋 → (∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
114, 10rabeqbidv 3424 . . . . 5 (𝑦 = 𝑋 → {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑))} = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))})
12 df-totbnd 37762 . . . . 5 TotBnd = (𝑦 ∈ V ↦ {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑))})
13 fvex 6871 . . . . . 6 (Met‘𝑋) ∈ V
1413rabex 5294 . . . . 5 {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))} ∈ V
1511, 12, 14fvmpt 6968 . . . 4 (𝑋 ∈ V → (TotBnd‘𝑋) = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))})
1615eleq2d 2814 . . 3 (𝑋 ∈ V → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))}))
17 fveq2 6858 . . . . . . . . . . 11 (𝑚 = 𝑀 → (ball‘𝑚) = (ball‘𝑀))
1817oveqd 7404 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑥(ball‘𝑚)𝑑) = (𝑥(ball‘𝑀)𝑑))
1918eqeq2d 2740 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2019rexbidv 3157 . . . . . . . 8 (𝑚 = 𝑀 → (∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2120ralbidv 3156 . . . . . . 7 (𝑚 = 𝑀 → (∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2221anbi2d 630 . . . . . 6 (𝑚 = 𝑀 → (( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2322rexbidv 3157 . . . . 5 (𝑚 = 𝑀 → (∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2423ralbidv 3156 . . . 4 (𝑚 = 𝑀 → (∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2524elrab 3659 . . 3 (𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))} ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2616, 25bitrdi 287 . 2 (𝑋 ∈ V → (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))))
271, 3, 26pm5.21nii 378 1 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447   cuni 4871  cfv 6511  (class class class)co 7387  Fincfn 8918  +crp 12951  Metcmet 21250  ballcbl 21251  TotBndctotbnd 37760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-totbnd 37762
This theorem is referenced by:  istotbnd2  37764  istotbnd3  37765  totbndmet  37766  totbndss  37771  heibor1  37804  heibor  37815
  Copyright terms: Public domain W3C validator