Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd Structured version   Visualization version   GIF version

Theorem istotbnd 37756
Description: The predicate "is a totally bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
istotbnd (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Distinct variable groups:   𝑏,𝑑,𝑣,𝑥,𝑀   𝑋,𝑏,𝑑,𝑣,𝑥

Proof of Theorem istotbnd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6945 . 2 (𝑀 ∈ (TotBnd‘𝑋) → 𝑋 ∈ V)
2 elfvex 6945 . . 3 (𝑀 ∈ (Met‘𝑋) → 𝑋 ∈ V)
32adantr 480 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) → 𝑋 ∈ V)
4 fveq2 6907 . . . . . 6 (𝑦 = 𝑋 → (Met‘𝑦) = (Met‘𝑋))
5 eqeq2 2747 . . . . . . . . 9 (𝑦 = 𝑋 → ( 𝑣 = 𝑦 𝑣 = 𝑋))
6 rexeq 3320 . . . . . . . . . 10 (𝑦 = 𝑋 → (∃𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)))
76ralbidv 3176 . . . . . . . . 9 (𝑦 = 𝑋 → (∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)))
85, 7anbi12d 632 . . . . . . . 8 (𝑦 = 𝑋 → (( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
98rexbidv 3177 . . . . . . 7 (𝑦 = 𝑋 → (∃𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
109ralbidv 3176 . . . . . 6 (𝑦 = 𝑋 → (∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
114, 10rabeqbidv 3452 . . . . 5 (𝑦 = 𝑋 → {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑))} = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))})
12 df-totbnd 37755 . . . . 5 TotBnd = (𝑦 ∈ V ↦ {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑))})
13 fvex 6920 . . . . . 6 (Met‘𝑋) ∈ V
1413rabex 5345 . . . . 5 {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))} ∈ V
1511, 12, 14fvmpt 7016 . . . 4 (𝑋 ∈ V → (TotBnd‘𝑋) = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))})
1615eleq2d 2825 . . 3 (𝑋 ∈ V → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))}))
17 fveq2 6907 . . . . . . . . . . 11 (𝑚 = 𝑀 → (ball‘𝑚) = (ball‘𝑀))
1817oveqd 7448 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑥(ball‘𝑚)𝑑) = (𝑥(ball‘𝑀)𝑑))
1918eqeq2d 2746 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2019rexbidv 3177 . . . . . . . 8 (𝑚 = 𝑀 → (∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2120ralbidv 3176 . . . . . . 7 (𝑚 = 𝑀 → (∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2221anbi2d 630 . . . . . 6 (𝑚 = 𝑀 → (( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2322rexbidv 3177 . . . . 5 (𝑚 = 𝑀 → (∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2423ralbidv 3176 . . . 4 (𝑚 = 𝑀 → (∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2524elrab 3695 . . 3 (𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))} ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2616, 25bitrdi 287 . 2 (𝑋 ∈ V → (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))))
271, 3, 26pm5.21nii 378 1 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  Vcvv 3478   cuni 4912  cfv 6563  (class class class)co 7431  Fincfn 8984  +crp 13032  Metcmet 21368  ballcbl 21369  TotBndctotbnd 37753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-totbnd 37755
This theorem is referenced by:  istotbnd2  37757  istotbnd3  37758  totbndmet  37759  totbndss  37764  heibor1  37797  heibor  37808
  Copyright terms: Public domain W3C validator