| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-trans | Structured version Visualization version GIF version | ||
| Description: Define the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| df-trans | ⊢ Trans = (V ∖ ran (( E ∘ E ) ∖ E )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctrans 35856 | . 2 class Trans | |
| 2 | cvv 3464 | . . 3 class V | |
| 3 | cep 5557 | . . . . . 6 class E | |
| 4 | 3, 3 | ccom 5663 | . . . . 5 class ( E ∘ E ) |
| 5 | 4, 3 | cdif 3928 | . . . 4 class (( E ∘ E ) ∖ E ) |
| 6 | 5 | crn 5660 | . . 3 class ran (( E ∘ E ) ∖ E ) |
| 7 | 2, 6 | cdif 3928 | . 2 class (V ∖ ran (( E ∘ E ) ∖ E )) |
| 8 | 1, 7 | wceq 1540 | 1 wff Trans = (V ∖ ran (( E ∘ E ) ∖ E )) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eltrans 35914 |
| Copyright terms: Public domain | W3C validator |