|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-trans | Structured version Visualization version GIF version | ||
| Description: Define the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| df-trans | ⊢ Trans = (V ∖ ran (( E ∘ E ) ∖ E )) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ctrans 35835 | . 2 class Trans | |
| 2 | cvv 3479 | . . 3 class V | |
| 3 | cep 5582 | . . . . . 6 class E | |
| 4 | 3, 3 | ccom 5688 | . . . . 5 class ( E ∘ E ) | 
| 5 | 4, 3 | cdif 3947 | . . . 4 class (( E ∘ E ) ∖ E ) | 
| 6 | 5 | crn 5685 | . . 3 class ran (( E ∘ E ) ∖ E ) | 
| 7 | 2, 6 | cdif 3947 | . 2 class (V ∖ ran (( E ∘ E ) ∖ E )) | 
| 8 | 1, 7 | wceq 1539 | 1 wff Trans = (V ∖ ran (( E ∘ E ) ∖ E )) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: eltrans 35893 | 
| Copyright terms: Public domain | W3C validator |