Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-trans | Structured version Visualization version GIF version |
Description: Define the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
df-trans | ⊢ Trans = (V ∖ ran (( E ∘ E ) ∖ E )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctrans 34184 | . 2 class Trans | |
2 | cvv 3437 | . . 3 class V | |
3 | cep 5505 | . . . . . 6 class E | |
4 | 3, 3 | ccom 5604 | . . . . 5 class ( E ∘ E ) |
5 | 4, 3 | cdif 3889 | . . . 4 class (( E ∘ E ) ∖ E ) |
6 | 5 | crn 5601 | . . 3 class ran (( E ∘ E ) ∖ E ) |
7 | 2, 6 | cdif 3889 | . 2 class (V ∖ ran (( E ∘ E ) ∖ E )) |
8 | 1, 7 | wceq 1539 | 1 wff Trans = (V ∖ ran (( E ∘ E ) ∖ E )) |
Colors of variables: wff setvar class |
This definition is referenced by: eltrans 34242 |
Copyright terms: Public domain | W3C validator |