Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrans Structured version   Visualization version   GIF version

Theorem eltrans 35855
Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
eltrans.1 𝐴 ∈ V
Assertion
Ref Expression
eltrans (𝐴 Trans ↔ Tr 𝐴)

Proof of Theorem eltrans
StepHypRef Expression
1 df-trans 35821 . . 3 Trans = (V ∖ ran (( E ∘ E ) ∖ E ))
21eleq2i 2836 . 2 (𝐴 Trans 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
3 eltrans.1 . . 3 𝐴 ∈ V
43dftr6 35713 . 2 (Tr 𝐴𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
52, 4bitr4i 278 1 (𝐴 Trans ↔ Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Vcvv 3488  cdif 3973  Tr wtr 5283   E cep 5598  ran crn 5701  ccom 5704   Trans ctrans 35797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-trans 35821
This theorem is referenced by:  dfon3  35856
  Copyright terms: Public domain W3C validator