Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrans Structured version   Visualization version   GIF version

Theorem eltrans 34172
Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
eltrans.1 𝐴 ∈ V
Assertion
Ref Expression
eltrans (𝐴 Trans ↔ Tr 𝐴)

Proof of Theorem eltrans
StepHypRef Expression
1 df-trans 34138 . . 3 Trans = (V ∖ ran (( E ∘ E ) ∖ E ))
21eleq2i 2831 . 2 (𝐴 Trans 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
3 eltrans.1 . . 3 𝐴 ∈ V
43dftr6 33697 . 2 (Tr 𝐴𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
52, 4bitr4i 277 1 (𝐴 Trans ↔ Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2109  Vcvv 3430  cdif 3888  Tr wtr 5195   E cep 5493  ran crn 5589  ccom 5592   Trans ctrans 34114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-tr 5196  df-eprel 5494  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-trans 34138
This theorem is referenced by:  dfon3  34173
  Copyright terms: Public domain W3C validator