Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrans Structured version   Visualization version   GIF version

Theorem eltrans 35879
Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
eltrans.1 𝐴 ∈ V
Assertion
Ref Expression
eltrans (𝐴 Trans ↔ Tr 𝐴)

Proof of Theorem eltrans
StepHypRef Expression
1 df-trans 35845 . . 3 Trans = (V ∖ ran (( E ∘ E ) ∖ E ))
21eleq2i 2820 . 2 (𝐴 Trans 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
3 eltrans.1 . . 3 𝐴 ∈ V
43dftr6 35738 . 2 (Tr 𝐴𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
52, 4bitr4i 278 1 (𝐴 Trans ↔ Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3447  cdif 3911  Tr wtr 5214   E cep 5537  ran crn 5639  ccom 5642   Trans ctrans 35821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-trans 35845
This theorem is referenced by:  dfon3  35880
  Copyright terms: Public domain W3C validator