Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eltrans | Structured version Visualization version GIF version |
Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
eltrans.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eltrans | ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trans 34138 | . . 3 ⊢ Trans = (V ∖ ran (( E ∘ E ) ∖ E )) | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ Trans ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
3 | eltrans.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3 | dftr6 33697 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
5 | 2, 4 | bitr4i 277 | 1 ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2109 Vcvv 3430 ∖ cdif 3888 Tr wtr 5195 E cep 5493 ran crn 5589 ∘ ccom 5592 Trans ctrans 34114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-eprel 5494 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-trans 34138 |
This theorem is referenced by: dfon3 34173 |
Copyright terms: Public domain | W3C validator |