| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eltrans | Structured version Visualization version GIF version | ||
| Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| eltrans.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eltrans | ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-trans 35920 | . . 3 ⊢ Trans = (V ∖ ran (( E ∘ E ) ∖ E )) | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ Trans ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
| 3 | eltrans.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3 | dftr6 35816 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
| 5 | 2, 4 | bitr4i 278 | 1 ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 Tr wtr 5200 E cep 5518 ran crn 5620 ∘ ccom 5623 Trans ctrans 35896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-trans 35920 |
| This theorem is referenced by: dfon3 35955 |
| Copyright terms: Public domain | W3C validator |