Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrans Structured version   Visualization version   GIF version

Theorem eltrans 34863
Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
eltrans.1 𝐴 ∈ V
Assertion
Ref Expression
eltrans (𝐴 Trans ↔ Tr 𝐴)

Proof of Theorem eltrans
StepHypRef Expression
1 df-trans 34829 . . 3 Trans = (V ∖ ran (( E ∘ E ) ∖ E ))
21eleq2i 2826 . 2 (𝐴 Trans 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
3 eltrans.1 . . 3 𝐴 ∈ V
43dftr6 34721 . 2 (Tr 𝐴𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
52, 4bitr4i 278 1 (𝐴 Trans ↔ Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2107  Vcvv 3475  cdif 3946  Tr wtr 5266   E cep 5580  ran crn 5678  ccom 5681   Trans ctrans 34805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-trans 34829
This theorem is referenced by:  dfon3  34864
  Copyright terms: Public domain W3C validator