| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eltrans | Structured version Visualization version GIF version | ||
| Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| eltrans.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eltrans | ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-trans 35852 | . . 3 ⊢ Trans = (V ∖ ran (( E ∘ E ) ∖ E )) | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ Trans ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
| 3 | eltrans.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3 | dftr6 35745 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
| 5 | 2, 4 | bitr4i 278 | 1 ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 Tr wtr 5217 E cep 5540 ran crn 5642 ∘ ccom 5645 Trans ctrans 35828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-trans 35852 |
| This theorem is referenced by: dfon3 35887 |
| Copyright terms: Public domain | W3C validator |