Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eltrans | Structured version Visualization version GIF version |
Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
eltrans.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eltrans | ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trans 34208 | . . 3 ⊢ Trans = (V ∖ ran (( E ∘ E ) ∖ E )) | |
2 | 1 | eleq2i 2828 | . 2 ⊢ (𝐴 ∈ Trans ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
3 | eltrans.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3 | dftr6 33767 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
5 | 2, 4 | bitr4i 278 | 1 ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2104 Vcvv 3437 ∖ cdif 3889 Tr wtr 5198 E cep 5505 ran crn 5601 ∘ ccom 5604 Trans ctrans 34184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-eprel 5506 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-trans 34208 |
This theorem is referenced by: dfon3 34243 |
Copyright terms: Public domain | W3C validator |