![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eltrans | Structured version Visualization version GIF version |
Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
eltrans.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eltrans | ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trans 35821 | . . 3 ⊢ Trans = (V ∖ ran (( E ∘ E ) ∖ E )) | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ Trans ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
3 | eltrans.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3 | dftr6 35713 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) |
5 | 2, 4 | bitr4i 278 | 1 ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 Tr wtr 5283 E cep 5598 ran crn 5701 ∘ ccom 5704 Trans ctrans 35797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-trans 35821 |
This theorem is referenced by: dfon3 35856 |
Copyright terms: Public domain | W3C validator |