|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bigcup | Structured version Visualization version GIF version | ||
| Description: Define the Bigcup function, which, per fvbigcup 35904, carries a set to its union. (Contributed by Scott Fenton, 11-Apr-2012.) | 
| Ref | Expression | 
|---|---|
| df-bigcup | ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbigcup 35836 | . 2 class Bigcup | |
| 2 | cvv 3479 | . . . 4 class V | |
| 3 | 2, 2 | cxp 5682 | . . 3 class (V × V) | 
| 4 | cep 5582 | . . . . . 6 class E | |
| 5 | 2, 4 | ctxp 35832 | . . . . 5 class (V ⊗ E ) | 
| 6 | 4, 4 | ccom 5688 | . . . . . 6 class ( E ∘ E ) | 
| 7 | 6, 2 | ctxp 35832 | . . . . 5 class (( E ∘ E ) ⊗ V) | 
| 8 | 5, 7 | csymdif 4251 | . . . 4 class ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)) | 
| 9 | 8 | crn 5685 | . . 3 class ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)) | 
| 10 | 3, 9 | cdif 3947 | . 2 class ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | 
| 11 | 1, 10 | wceq 1539 | 1 wff Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: relbigcup 35899 brbigcup 35900 | 
| Copyright terms: Public domain | W3C validator |