Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bigcup | Structured version Visualization version GIF version |
Description: Define the Bigcup function, which, per fvbigcup 34204, carries a set to its union. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
df-bigcup | ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbigcup 34136 | . 2 class Bigcup | |
2 | cvv 3432 | . . . 4 class V | |
3 | 2, 2 | cxp 5587 | . . 3 class (V × V) |
4 | cep 5494 | . . . . . 6 class E | |
5 | 2, 4 | ctxp 34132 | . . . . 5 class (V ⊗ E ) |
6 | 4, 4 | ccom 5593 | . . . . . 6 class ( E ∘ E ) |
7 | 6, 2 | ctxp 34132 | . . . . 5 class (( E ∘ E ) ⊗ V) |
8 | 5, 7 | csymdif 4175 | . . . 4 class ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)) |
9 | 8 | crn 5590 | . . 3 class ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)) |
10 | 3, 9 | cdif 3884 | . 2 class ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) |
11 | 1, 10 | wceq 1539 | 1 wff Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) |
Colors of variables: wff setvar class |
This definition is referenced by: relbigcup 34199 brbigcup 34200 |
Copyright terms: Public domain | W3C validator |