Detailed syntax breakdown of Definition df-trkgcb
| Step | Hyp | Ref
| Expression |
| 1 | | cstrkgcb 28438 |
. 2
class
TarskiGCB |
| 2 | | vx |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . . . . . . . . . . . . . . 19
class 𝑥 |
| 4 | | vy |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑦 |
| 5 | 4 | cv 1539 |
. . . . . . . . . . . . . . . . . . 19
class 𝑦 |
| 6 | 3, 5 | wne 2940 |
. . . . . . . . . . . . . . . . . 18
wff 𝑥 ≠ 𝑦 |
| 7 | | vz |
. . . . . . . . . . . . . . . . . . . . 21
setvar 𝑧 |
| 8 | 7 | cv 1539 |
. . . . . . . . . . . . . . . . . . . 20
class 𝑧 |
| 9 | | vi |
. . . . . . . . . . . . . . . . . . . . 21
setvar 𝑖 |
| 10 | 9 | cv 1539 |
. . . . . . . . . . . . . . . . . . . 20
class 𝑖 |
| 11 | 3, 8, 10 | co 7431 |
. . . . . . . . . . . . . . . . . . 19
class (𝑥𝑖𝑧) |
| 12 | 5, 11 | wcel 2108 |
. . . . . . . . . . . . . . . . . 18
wff 𝑦 ∈ (𝑥𝑖𝑧) |
| 13 | | vb |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑏 |
| 14 | 13 | cv 1539 |
. . . . . . . . . . . . . . . . . . 19
class 𝑏 |
| 15 | | va |
. . . . . . . . . . . . . . . . . . . . 21
setvar 𝑎 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . . . . . . . . . . 20
class 𝑎 |
| 17 | | vc |
. . . . . . . . . . . . . . . . . . . . 21
setvar 𝑐 |
| 18 | 17 | cv 1539 |
. . . . . . . . . . . . . . . . . . . 20
class 𝑐 |
| 19 | 16, 18, 10 | co 7431 |
. . . . . . . . . . . . . . . . . . 19
class (𝑎𝑖𝑐) |
| 20 | 14, 19 | wcel 2108 |
. . . . . . . . . . . . . . . . . 18
wff 𝑏 ∈ (𝑎𝑖𝑐) |
| 21 | 6, 12, 20 | w3a 1087 |
. . . . . . . . . . . . . . . . 17
wff (𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) |
| 22 | | vd |
. . . . . . . . . . . . . . . . . . . . . 22
setvar 𝑑 |
| 23 | 22 | cv 1539 |
. . . . . . . . . . . . . . . . . . . . 21
class 𝑑 |
| 24 | 3, 5, 23 | co 7431 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑥𝑑𝑦) |
| 25 | 16, 14, 23 | co 7431 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑎𝑑𝑏) |
| 26 | 24, 25 | wceq 1540 |
. . . . . . . . . . . . . . . . . . 19
wff (𝑥𝑑𝑦) = (𝑎𝑑𝑏) |
| 27 | 5, 8, 23 | co 7431 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑦𝑑𝑧) |
| 28 | 14, 18, 23 | co 7431 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑏𝑑𝑐) |
| 29 | 27, 28 | wceq 1540 |
. . . . . . . . . . . . . . . . . . 19
wff (𝑦𝑑𝑧) = (𝑏𝑑𝑐) |
| 30 | 26, 29 | wa 395 |
. . . . . . . . . . . . . . . . . 18
wff ((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) |
| 31 | | vu |
. . . . . . . . . . . . . . . . . . . . . 22
setvar 𝑢 |
| 32 | 31 | cv 1539 |
. . . . . . . . . . . . . . . . . . . . 21
class 𝑢 |
| 33 | 3, 32, 23 | co 7431 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑥𝑑𝑢) |
| 34 | | vv |
. . . . . . . . . . . . . . . . . . . . . 22
setvar 𝑣 |
| 35 | 34 | cv 1539 |
. . . . . . . . . . . . . . . . . . . . 21
class 𝑣 |
| 36 | 16, 35, 23 | co 7431 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑎𝑑𝑣) |
| 37 | 33, 36 | wceq 1540 |
. . . . . . . . . . . . . . . . . . 19
wff (𝑥𝑑𝑢) = (𝑎𝑑𝑣) |
| 38 | 5, 32, 23 | co 7431 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑦𝑑𝑢) |
| 39 | 14, 35, 23 | co 7431 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑏𝑑𝑣) |
| 40 | 38, 39 | wceq 1540 |
. . . . . . . . . . . . . . . . . . 19
wff (𝑦𝑑𝑢) = (𝑏𝑑𝑣) |
| 41 | 37, 40 | wa 395 |
. . . . . . . . . . . . . . . . . 18
wff ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)) |
| 42 | 30, 41 | wa 395 |
. . . . . . . . . . . . . . . . 17
wff (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣))) |
| 43 | 21, 42 | wa 395 |
. . . . . . . . . . . . . . . 16
wff ((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) |
| 44 | 8, 32, 23 | co 7431 |
. . . . . . . . . . . . . . . . 17
class (𝑧𝑑𝑢) |
| 45 | 18, 35, 23 | co 7431 |
. . . . . . . . . . . . . . . . 17
class (𝑐𝑑𝑣) |
| 46 | 44, 45 | wceq 1540 |
. . . . . . . . . . . . . . . 16
wff (𝑧𝑑𝑢) = (𝑐𝑑𝑣) |
| 47 | 43, 46 | wi 4 |
. . . . . . . . . . . . . . 15
wff (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
| 48 | | vp |
. . . . . . . . . . . . . . . 16
setvar 𝑝 |
| 49 | 48 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑝 |
| 50 | 47, 34, 49 | wral 3061 |
. . . . . . . . . . . . . 14
wff
∀𝑣 ∈
𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
| 51 | 50, 17, 49 | wral 3061 |
. . . . . . . . . . . . 13
wff
∀𝑐 ∈
𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
| 52 | 51, 13, 49 | wral 3061 |
. . . . . . . . . . . 12
wff
∀𝑏 ∈
𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
| 53 | 52, 15, 49 | wral 3061 |
. . . . . . . . . . 11
wff
∀𝑎 ∈
𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
| 54 | 53, 31, 49 | wral 3061 |
. . . . . . . . . 10
wff
∀𝑢 ∈
𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
| 55 | 54, 7, 49 | wral 3061 |
. . . . . . . . 9
wff
∀𝑧 ∈
𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
| 56 | 55, 4, 49 | wral 3061 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
| 57 | 56, 2, 49 | wral 3061 |
. . . . . . 7
wff
∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
| 58 | 27, 25 | wceq 1540 |
. . . . . . . . . . . . 13
wff (𝑦𝑑𝑧) = (𝑎𝑑𝑏) |
| 59 | 12, 58 | wa 395 |
. . . . . . . . . . . 12
wff (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
| 60 | 59, 7, 49 | wrex 3070 |
. . . . . . . . . . 11
wff
∃𝑧 ∈
𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
| 61 | 60, 13, 49 | wral 3061 |
. . . . . . . . . 10
wff
∀𝑏 ∈
𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
| 62 | 61, 15, 49 | wral 3061 |
. . . . . . . . 9
wff
∀𝑎 ∈
𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
| 63 | 62, 4, 49 | wral 3061 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
| 64 | 63, 2, 49 | wral 3061 |
. . . . . . 7
wff
∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
| 65 | 57, 64 | wa 395 |
. . . . . 6
wff
(∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏))) |
| 66 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 67 | 66 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 68 | | citv 28441 |
. . . . . . 7
class
Itv |
| 69 | 67, 68 | cfv 6561 |
. . . . . 6
class
(Itv‘𝑓) |
| 70 | 65, 9, 69 | wsbc 3788 |
. . . . 5
wff
[(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏))) |
| 71 | | cds 17306 |
. . . . . 6
class
dist |
| 72 | 67, 71 | cfv 6561 |
. . . . 5
class
(dist‘𝑓) |
| 73 | 70, 22, 72 | wsbc 3788 |
. . . 4
wff
[(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏))) |
| 74 | | cbs 17247 |
. . . . 5
class
Base |
| 75 | 67, 74 | cfv 6561 |
. . . 4
class
(Base‘𝑓) |
| 76 | 73, 48, 75 | wsbc 3788 |
. . 3
wff
[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏))) |
| 77 | 76, 66 | cab 2714 |
. 2
class {𝑓 ∣
[(Base‘𝑓) /
𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))} |
| 78 | 1, 77 | wceq 1540 |
1
wff
TarskiGCB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))} |