Detailed syntax breakdown of Definition df-trkgcb
Step | Hyp | Ref
| Expression |
1 | | cstrkgcb 26696 |
. 2
class
TarskiGCB |
2 | | vx |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑥 |
3 | 2 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑥 |
4 | | vy |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑦 |
5 | 4 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑦 |
6 | 3, 5 | wne 2942 |
. . . . . . . . . . . . . . . . . 18
wff 𝑥 ≠ 𝑦 |
7 | | vz |
. . . . . . . . . . . . . . . . . . . . 21
setvar 𝑧 |
8 | 7 | cv 1538 |
. . . . . . . . . . . . . . . . . . . 20
class 𝑧 |
9 | | vi |
. . . . . . . . . . . . . . . . . . . . 21
setvar 𝑖 |
10 | 9 | cv 1538 |
. . . . . . . . . . . . . . . . . . . 20
class 𝑖 |
11 | 3, 8, 10 | co 7255 |
. . . . . . . . . . . . . . . . . . 19
class (𝑥𝑖𝑧) |
12 | 5, 11 | wcel 2108 |
. . . . . . . . . . . . . . . . . 18
wff 𝑦 ∈ (𝑥𝑖𝑧) |
13 | | vb |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑏 |
14 | 13 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑏 |
15 | | va |
. . . . . . . . . . . . . . . . . . . . 21
setvar 𝑎 |
16 | 15 | cv 1538 |
. . . . . . . . . . . . . . . . . . . 20
class 𝑎 |
17 | | vc |
. . . . . . . . . . . . . . . . . . . . 21
setvar 𝑐 |
18 | 17 | cv 1538 |
. . . . . . . . . . . . . . . . . . . 20
class 𝑐 |
19 | 16, 18, 10 | co 7255 |
. . . . . . . . . . . . . . . . . . 19
class (𝑎𝑖𝑐) |
20 | 14, 19 | wcel 2108 |
. . . . . . . . . . . . . . . . . 18
wff 𝑏 ∈ (𝑎𝑖𝑐) |
21 | 6, 12, 20 | w3a 1085 |
. . . . . . . . . . . . . . . . 17
wff (𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) |
22 | | vd |
. . . . . . . . . . . . . . . . . . . . . 22
setvar 𝑑 |
23 | 22 | cv 1538 |
. . . . . . . . . . . . . . . . . . . . 21
class 𝑑 |
24 | 3, 5, 23 | co 7255 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑥𝑑𝑦) |
25 | 16, 14, 23 | co 7255 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑎𝑑𝑏) |
26 | 24, 25 | wceq 1539 |
. . . . . . . . . . . . . . . . . . 19
wff (𝑥𝑑𝑦) = (𝑎𝑑𝑏) |
27 | 5, 8, 23 | co 7255 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑦𝑑𝑧) |
28 | 14, 18, 23 | co 7255 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑏𝑑𝑐) |
29 | 27, 28 | wceq 1539 |
. . . . . . . . . . . . . . . . . . 19
wff (𝑦𝑑𝑧) = (𝑏𝑑𝑐) |
30 | 26, 29 | wa 395 |
. . . . . . . . . . . . . . . . . 18
wff ((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) |
31 | | vu |
. . . . . . . . . . . . . . . . . . . . . 22
setvar 𝑢 |
32 | 31 | cv 1538 |
. . . . . . . . . . . . . . . . . . . . 21
class 𝑢 |
33 | 3, 32, 23 | co 7255 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑥𝑑𝑢) |
34 | | vv |
. . . . . . . . . . . . . . . . . . . . . 22
setvar 𝑣 |
35 | 34 | cv 1538 |
. . . . . . . . . . . . . . . . . . . . 21
class 𝑣 |
36 | 16, 35, 23 | co 7255 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑎𝑑𝑣) |
37 | 33, 36 | wceq 1539 |
. . . . . . . . . . . . . . . . . . 19
wff (𝑥𝑑𝑢) = (𝑎𝑑𝑣) |
38 | 5, 32, 23 | co 7255 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑦𝑑𝑢) |
39 | 14, 35, 23 | co 7255 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑏𝑑𝑣) |
40 | 38, 39 | wceq 1539 |
. . . . . . . . . . . . . . . . . . 19
wff (𝑦𝑑𝑢) = (𝑏𝑑𝑣) |
41 | 37, 40 | wa 395 |
. . . . . . . . . . . . . . . . . 18
wff ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)) |
42 | 30, 41 | wa 395 |
. . . . . . . . . . . . . . . . 17
wff (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣))) |
43 | 21, 42 | wa 395 |
. . . . . . . . . . . . . . . 16
wff ((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) |
44 | 8, 32, 23 | co 7255 |
. . . . . . . . . . . . . . . . 17
class (𝑧𝑑𝑢) |
45 | 18, 35, 23 | co 7255 |
. . . . . . . . . . . . . . . . 17
class (𝑐𝑑𝑣) |
46 | 44, 45 | wceq 1539 |
. . . . . . . . . . . . . . . 16
wff (𝑧𝑑𝑢) = (𝑐𝑑𝑣) |
47 | 43, 46 | wi 4 |
. . . . . . . . . . . . . . 15
wff (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
48 | | vp |
. . . . . . . . . . . . . . . 16
setvar 𝑝 |
49 | 48 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑝 |
50 | 47, 34, 49 | wral 3063 |
. . . . . . . . . . . . . 14
wff
∀𝑣 ∈
𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
51 | 50, 17, 49 | wral 3063 |
. . . . . . . . . . . . 13
wff
∀𝑐 ∈
𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
52 | 51, 13, 49 | wral 3063 |
. . . . . . . . . . . 12
wff
∀𝑏 ∈
𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
53 | 52, 15, 49 | wral 3063 |
. . . . . . . . . . 11
wff
∀𝑎 ∈
𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
54 | 53, 31, 49 | wral 3063 |
. . . . . . . . . 10
wff
∀𝑢 ∈
𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
55 | 54, 7, 49 | wral 3063 |
. . . . . . . . 9
wff
∀𝑧 ∈
𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
56 | 55, 4, 49 | wral 3063 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
57 | 56, 2, 49 | wral 3063 |
. . . . . . 7
wff
∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) |
58 | 27, 25 | wceq 1539 |
. . . . . . . . . . . . 13
wff (𝑦𝑑𝑧) = (𝑎𝑑𝑏) |
59 | 12, 58 | wa 395 |
. . . . . . . . . . . 12
wff (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
60 | 59, 7, 49 | wrex 3064 |
. . . . . . . . . . 11
wff
∃𝑧 ∈
𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
61 | 60, 13, 49 | wral 3063 |
. . . . . . . . . 10
wff
∀𝑏 ∈
𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
62 | 61, 15, 49 | wral 3063 |
. . . . . . . . 9
wff
∀𝑎 ∈
𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
63 | 62, 4, 49 | wral 3063 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
64 | 63, 2, 49 | wral 3063 |
. . . . . . 7
wff
∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)) |
65 | 57, 64 | wa 395 |
. . . . . 6
wff
(∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏))) |
66 | | vf |
. . . . . . . 8
setvar 𝑓 |
67 | 66 | cv 1538 |
. . . . . . 7
class 𝑓 |
68 | | citv 26699 |
. . . . . . 7
class
Itv |
69 | 67, 68 | cfv 6418 |
. . . . . 6
class
(Itv‘𝑓) |
70 | 65, 9, 69 | wsbc 3711 |
. . . . 5
wff
[(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏))) |
71 | | cds 16897 |
. . . . . 6
class
dist |
72 | 67, 71 | cfv 6418 |
. . . . 5
class
(dist‘𝑓) |
73 | 70, 22, 72 | wsbc 3711 |
. . . 4
wff
[(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏))) |
74 | | cbs 16840 |
. . . . 5
class
Base |
75 | 67, 74 | cfv 6418 |
. . . 4
class
(Base‘𝑓) |
76 | 73, 48, 75 | wsbc 3711 |
. . 3
wff
[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏))) |
77 | 76, 66 | cab 2715 |
. 2
class {𝑓 ∣
[(Base‘𝑓) /
𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))} |
78 | 1, 77 | wceq 1539 |
1
wff
TarskiGCB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))} |