Detailed syntax breakdown of Definition df-trl
Step | Hyp | Ref
| Expression |
1 | | ctrl 37727 |
. 2
class
trL |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3410 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 37553 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6336 |
. . . 4
class
(LHyp‘𝑘) |
8 | | vf |
. . . . 5
setvar 𝑓 |
9 | 4 | cv 1538 |
. . . . . 6
class 𝑤 |
10 | | cltrn 37670 |
. . . . . . 7
class
LTrn |
11 | 5, 10 | cfv 6336 |
. . . . . 6
class
(LTrn‘𝑘) |
12 | 9, 11 | cfv 6336 |
. . . . 5
class
((LTrn‘𝑘)‘𝑤) |
13 | | vp |
. . . . . . . . . . 11
setvar 𝑝 |
14 | 13 | cv 1538 |
. . . . . . . . . 10
class 𝑝 |
15 | | cple 16623 |
. . . . . . . . . . 11
class
le |
16 | 5, 15 | cfv 6336 |
. . . . . . . . . 10
class
(le‘𝑘) |
17 | 14, 9, 16 | wbr 5033 |
. . . . . . . . 9
wff 𝑝(le‘𝑘)𝑤 |
18 | 17 | wn 3 |
. . . . . . . 8
wff ¬
𝑝(le‘𝑘)𝑤 |
19 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
20 | 19 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
21 | 8 | cv 1538 |
. . . . . . . . . . . 12
class 𝑓 |
22 | 14, 21 | cfv 6336 |
. . . . . . . . . . 11
class (𝑓‘𝑝) |
23 | | cjn 17613 |
. . . . . . . . . . . 12
class
join |
24 | 5, 23 | cfv 6336 |
. . . . . . . . . . 11
class
(join‘𝑘) |
25 | 14, 22, 24 | co 7151 |
. . . . . . . . . 10
class (𝑝(join‘𝑘)(𝑓‘𝑝)) |
26 | | cmee 17614 |
. . . . . . . . . . 11
class
meet |
27 | 5, 26 | cfv 6336 |
. . . . . . . . . 10
class
(meet‘𝑘) |
28 | 25, 9, 27 | co 7151 |
. . . . . . . . 9
class ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) |
29 | 20, 28 | wceq 1539 |
. . . . . . . 8
wff 𝑥 = ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) |
30 | 18, 29 | wi 4 |
. . . . . . 7
wff (¬
𝑝(le‘𝑘)𝑤 → 𝑥 = ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤)) |
31 | | catm 36832 |
. . . . . . . 8
class
Atoms |
32 | 5, 31 | cfv 6336 |
. . . . . . 7
class
(Atoms‘𝑘) |
33 | 30, 13, 32 | wral 3071 |
. . . . . 6
wff
∀𝑝 ∈
(Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤 → 𝑥 = ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤)) |
34 | | cbs 16534 |
. . . . . . 7
class
Base |
35 | 5, 34 | cfv 6336 |
. . . . . 6
class
(Base‘𝑘) |
36 | 33, 19, 35 | crio 7108 |
. . . . 5
class
(℩𝑥
∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤 → 𝑥 = ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤))) |
37 | 8, 12, 36 | cmpt 5113 |
. . . 4
class (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (℩𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤 → 𝑥 = ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤)))) |
38 | 4, 7, 37 | cmpt 5113 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (℩𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤 → 𝑥 = ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤))))) |
39 | 2, 3, 38 | cmpt 5113 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (℩𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤 → 𝑥 = ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤)))))) |
40 | 1, 39 | wceq 1539 |
1
wff trL =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (℩𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤 → 𝑥 = ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤)))))) |