Step | Hyp | Ref
| Expression |
1 | | ctrl 39018 |
. 2
class
trL |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3475 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar π€ |
5 | 2 | cv 1541 |
. . . . 5
class π |
6 | | clh 38844 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6541 |
. . . 4
class
(LHypβπ) |
8 | | vf |
. . . . 5
setvar π |
9 | 4 | cv 1541 |
. . . . . 6
class π€ |
10 | | cltrn 38961 |
. . . . . . 7
class
LTrn |
11 | 5, 10 | cfv 6541 |
. . . . . 6
class
(LTrnβπ) |
12 | 9, 11 | cfv 6541 |
. . . . 5
class
((LTrnβπ)βπ€) |
13 | | vp |
. . . . . . . . . . 11
setvar π |
14 | 13 | cv 1541 |
. . . . . . . . . 10
class π |
15 | | cple 17201 |
. . . . . . . . . . 11
class
le |
16 | 5, 15 | cfv 6541 |
. . . . . . . . . 10
class
(leβπ) |
17 | 14, 9, 16 | wbr 5148 |
. . . . . . . . 9
wff π(leβπ)π€ |
18 | 17 | wn 3 |
. . . . . . . 8
wff Β¬
π(leβπ)π€ |
19 | | vx |
. . . . . . . . . 10
setvar π₯ |
20 | 19 | cv 1541 |
. . . . . . . . 9
class π₯ |
21 | 8 | cv 1541 |
. . . . . . . . . . . 12
class π |
22 | 14, 21 | cfv 6541 |
. . . . . . . . . . 11
class (πβπ) |
23 | | cjn 18261 |
. . . . . . . . . . . 12
class
join |
24 | 5, 23 | cfv 6541 |
. . . . . . . . . . 11
class
(joinβπ) |
25 | 14, 22, 24 | co 7406 |
. . . . . . . . . 10
class (π(joinβπ)(πβπ)) |
26 | | cmee 18262 |
. . . . . . . . . . 11
class
meet |
27 | 5, 26 | cfv 6541 |
. . . . . . . . . 10
class
(meetβπ) |
28 | 25, 9, 27 | co 7406 |
. . . . . . . . 9
class ((π(joinβπ)(πβπ))(meetβπ)π€) |
29 | 20, 28 | wceq 1542 |
. . . . . . . 8
wff π₯ = ((π(joinβπ)(πβπ))(meetβπ)π€) |
30 | 18, 29 | wi 4 |
. . . . . . 7
wff (Β¬
π(leβπ)π€ β π₯ = ((π(joinβπ)(πβπ))(meetβπ)π€)) |
31 | | catm 38122 |
. . . . . . . 8
class
Atoms |
32 | 5, 31 | cfv 6541 |
. . . . . . 7
class
(Atomsβπ) |
33 | 30, 13, 32 | wral 3062 |
. . . . . 6
wff
βπ β
(Atomsβπ)(Β¬ π(leβπ)π€ β π₯ = ((π(joinβπ)(πβπ))(meetβπ)π€)) |
34 | | cbs 17141 |
. . . . . . 7
class
Base |
35 | 5, 34 | cfv 6541 |
. . . . . 6
class
(Baseβπ) |
36 | 33, 19, 35 | crio 7361 |
. . . . 5
class
(β©π₯
β (Baseβπ)βπ β (Atomsβπ)(Β¬ π(leβπ)π€ β π₯ = ((π(joinβπ)(πβπ))(meetβπ)π€))) |
37 | 8, 12, 36 | cmpt 5231 |
. . . 4
class (π β ((LTrnβπ)βπ€) β¦ (β©π₯ β (Baseβπ)βπ β (Atomsβπ)(Β¬ π(leβπ)π€ β π₯ = ((π(joinβπ)(πβπ))(meetβπ)π€)))) |
38 | 4, 7, 37 | cmpt 5231 |
. . 3
class (π€ β (LHypβπ) β¦ (π β ((LTrnβπ)βπ€) β¦ (β©π₯ β (Baseβπ)βπ β (Atomsβπ)(Β¬ π(leβπ)π€ β π₯ = ((π(joinβπ)(πβπ))(meetβπ)π€))))) |
39 | 2, 3, 38 | cmpt 5231 |
. 2
class (π β V β¦ (π€ β (LHypβπ) β¦ (π β ((LTrnβπ)βπ€) β¦ (β©π₯ β (Baseβπ)βπ β (Atomsβπ)(Β¬ π(leβπ)π€ β π₯ = ((π(joinβπ)(πβπ))(meetβπ)π€)))))) |
40 | 1, 39 | wceq 1542 |
1
wff trL =
(π β V β¦ (π€ β (LHypβπ) β¦ (π β ((LTrnβπ)βπ€) β¦ (β©π₯ β (Baseβπ)βπ β (Atomsβπ)(Β¬ π(leβπ)π€ β π₯ = ((π(joinβπ)(πβπ))(meetβπ)π€)))))) |