Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlfset Structured version   Visualization version   GIF version

Theorem trlfset 39872
Description: The set of all traces of lattice translations for a lattice 𝐾. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlset.b 𝐵 = (Base‘𝐾)
trlset.l = (le‘𝐾)
trlset.j = (join‘𝐾)
trlset.m = (meet‘𝐾)
trlset.a 𝐴 = (Atoms‘𝐾)
trlset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
trlfset (𝐾𝐶 → (trL‘𝐾) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
Distinct variable groups:   𝐴,𝑝   𝑥,𝐵   𝑤,𝐻   𝑓,𝑝,𝑤,𝑥,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑤,𝑓)   𝐵(𝑤,𝑓,𝑝)   𝐶(𝑥,𝑤,𝑓,𝑝)   𝐻(𝑥,𝑓,𝑝)   (𝑥,𝑤,𝑓,𝑝)   (𝑥,𝑤,𝑓,𝑝)   (𝑥,𝑤,𝑓,𝑝)

Proof of Theorem trlfset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3482 . 2 (𝐾𝐶𝐾 ∈ V)
2 fveq2 6893 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 trlset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2784 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6893 . . . . . 6 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6895 . . . . 5 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
7 fveq2 6893 . . . . . . 7 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
8 trlset.b . . . . . . 7 𝐵 = (Base‘𝐾)
97, 8eqtr4di 2784 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
10 fveq2 6893 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
11 trlset.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
1210, 11eqtr4di 2784 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
13 fveq2 6893 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
14 trlset.l . . . . . . . . . . 11 = (le‘𝐾)
1513, 14eqtr4di 2784 . . . . . . . . . 10 (𝑘 = 𝐾 → (le‘𝑘) = )
1615breqd 5156 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑝(le‘𝑘)𝑤𝑝 𝑤))
1716notbid 317 . . . . . . . 8 (𝑘 = 𝐾 → (¬ 𝑝(le‘𝑘)𝑤 ↔ ¬ 𝑝 𝑤))
18 fveq2 6893 . . . . . . . . . . 11 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
19 trlset.m . . . . . . . . . . 11 = (meet‘𝐾)
2018, 19eqtr4di 2784 . . . . . . . . . 10 (𝑘 = 𝐾 → (meet‘𝑘) = )
21 fveq2 6893 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
22 trlset.j . . . . . . . . . . . 12 = (join‘𝐾)
2321, 22eqtr4di 2784 . . . . . . . . . . 11 (𝑘 = 𝐾 → (join‘𝑘) = )
2423oveqd 7433 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑝(join‘𝑘)(𝑓𝑝)) = (𝑝 (𝑓𝑝)))
25 eqidd 2727 . . . . . . . . . 10 (𝑘 = 𝐾𝑤 = 𝑤)
2620, 24, 25oveq123d 7437 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑝 (𝑓𝑝)) 𝑤))
2726eqeq2d 2737 . . . . . . . 8 (𝑘 = 𝐾 → (𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) ↔ 𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))
2817, 27imbi12d 343 . . . . . . 7 (𝑘 = 𝐾 → ((¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤)) ↔ (¬ 𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))
2912, 28raleqbidv 3330 . . . . . 6 (𝑘 = 𝐾 → (∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤)) ↔ ∀𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))
309, 29riotaeqbidv 7375 . . . . 5 (𝑘 = 𝐾 → (𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤))) = (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))
316, 30mpteq12dv 5236 . . . 4 (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))
324, 31mpteq12dv 5236 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤))))) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
33 df-trl 39871 . . 3 trL = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤))))))
3432, 33, 3mptfvmpt 7237 . 2 (𝐾 ∈ V → (trL‘𝐾) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
351, 34syl 17 1 (𝐾𝐶 → (trL‘𝐾) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  wral 3051  Vcvv 3462   class class class wbr 5145  cmpt 5228  cfv 6546  crio 7371  (class class class)co 7416  Basecbs 17208  lecple 17268  joincjn 18331  meetcmee 18332  Atomscatm 38974  LHypclh 39696  LTrncltrn 39813  trLctrl 39870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-trl 39871
This theorem is referenced by:  trlset  39873
  Copyright terms: Public domain W3C validator