Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlfset Structured version   Visualization version   GIF version

Theorem trlfset 40143
Description: The set of all traces of lattice translations for a lattice 𝐾. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlset.b 𝐵 = (Base‘𝐾)
trlset.l = (le‘𝐾)
trlset.j = (join‘𝐾)
trlset.m = (meet‘𝐾)
trlset.a 𝐴 = (Atoms‘𝐾)
trlset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
trlfset (𝐾𝐶 → (trL‘𝐾) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
Distinct variable groups:   𝐴,𝑝   𝑥,𝐵   𝑤,𝐻   𝑓,𝑝,𝑤,𝑥,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑤,𝑓)   𝐵(𝑤,𝑓,𝑝)   𝐶(𝑥,𝑤,𝑓,𝑝)   𝐻(𝑥,𝑓,𝑝)   (𝑥,𝑤,𝑓,𝑝)   (𝑥,𝑤,𝑓,𝑝)   (𝑥,𝑤,𝑓,𝑝)

Proof of Theorem trlfset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3499 . 2 (𝐾𝐶𝐾 ∈ V)
2 fveq2 6907 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 trlset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2793 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6907 . . . . . 6 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6909 . . . . 5 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
7 fveq2 6907 . . . . . . 7 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
8 trlset.b . . . . . . 7 𝐵 = (Base‘𝐾)
97, 8eqtr4di 2793 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
10 fveq2 6907 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
11 trlset.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
1210, 11eqtr4di 2793 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
13 fveq2 6907 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
14 trlset.l . . . . . . . . . . 11 = (le‘𝐾)
1513, 14eqtr4di 2793 . . . . . . . . . 10 (𝑘 = 𝐾 → (le‘𝑘) = )
1615breqd 5159 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑝(le‘𝑘)𝑤𝑝 𝑤))
1716notbid 318 . . . . . . . 8 (𝑘 = 𝐾 → (¬ 𝑝(le‘𝑘)𝑤 ↔ ¬ 𝑝 𝑤))
18 fveq2 6907 . . . . . . . . . . 11 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
19 trlset.m . . . . . . . . . . 11 = (meet‘𝐾)
2018, 19eqtr4di 2793 . . . . . . . . . 10 (𝑘 = 𝐾 → (meet‘𝑘) = )
21 fveq2 6907 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
22 trlset.j . . . . . . . . . . . 12 = (join‘𝐾)
2321, 22eqtr4di 2793 . . . . . . . . . . 11 (𝑘 = 𝐾 → (join‘𝑘) = )
2423oveqd 7448 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑝(join‘𝑘)(𝑓𝑝)) = (𝑝 (𝑓𝑝)))
25 eqidd 2736 . . . . . . . . . 10 (𝑘 = 𝐾𝑤 = 𝑤)
2620, 24, 25oveq123d 7452 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑝 (𝑓𝑝)) 𝑤))
2726eqeq2d 2746 . . . . . . . 8 (𝑘 = 𝐾 → (𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) ↔ 𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))
2817, 27imbi12d 344 . . . . . . 7 (𝑘 = 𝐾 → ((¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤)) ↔ (¬ 𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))
2912, 28raleqbidv 3344 . . . . . 6 (𝑘 = 𝐾 → (∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤)) ↔ ∀𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))
309, 29riotaeqbidv 7391 . . . . 5 (𝑘 = 𝐾 → (𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤))) = (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))
316, 30mpteq12dv 5239 . . . 4 (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))
324, 31mpteq12dv 5239 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤))))) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
33 df-trl 40142 . . 3 trL = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤))))))
3432, 33, 3mptfvmpt 7248 . 2 (𝐾 ∈ V → (trL‘𝐾) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
351, 34syl 17 1 (𝐾𝐶 → (trL‘𝐾) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478   class class class wbr 5148  cmpt 5231  cfv 6563  crio 7387  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  meetcmee 18370  Atomscatm 39245  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-trl 40142
This theorem is referenced by:  trlset  40144
  Copyright terms: Public domain W3C validator