![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tsk | Structured version Visualization version GIF version |
Description: The class of all Tarski classes. Tarski classes is a phrase coined by Grzegorz Bancerek in his article Tarski's Classes and Ranks, Journal of Formalized Mathematics, Vol 1, No 3, May-August 1990. A Tarski class is a set whose existence is ensured by Tarski's Axiom A (see ax-groth 10817 and the equivalent axioms). Axiom A was first presented in Tarski's article Ueber unerreichbare Kardinalzahlen. Tarski introduced Axiom A to allow reasoning with inaccessible cardinals in ZFC. Later, Grothendieck introduced the concept of (Grothendieck) universes and showed they were exactly transitive Tarski classes. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
df-tsk | ⊢ Tarski = {𝑦 ∣ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctsk 10742 | . 2 class Tarski | |
2 | vz | . . . . . . . . 9 setvar 𝑧 | |
3 | 2 | cv 1540 | . . . . . . . 8 class 𝑧 |
4 | 3 | cpw 4602 | . . . . . . 7 class 𝒫 𝑧 |
5 | vy | . . . . . . . 8 setvar 𝑦 | |
6 | 5 | cv 1540 | . . . . . . 7 class 𝑦 |
7 | 4, 6 | wss 3948 | . . . . . 6 wff 𝒫 𝑧 ⊆ 𝑦 |
8 | vw | . . . . . . . . 9 setvar 𝑤 | |
9 | 8 | cv 1540 | . . . . . . . 8 class 𝑤 |
10 | 4, 9 | wss 3948 | . . . . . . 7 wff 𝒫 𝑧 ⊆ 𝑤 |
11 | 10, 8, 6 | wrex 3070 | . . . . . 6 wff ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 |
12 | 7, 11 | wa 396 | . . . . 5 wff (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) |
13 | 12, 2, 6 | wral 3061 | . . . 4 wff ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) |
14 | cen 8935 | . . . . . . 7 class ≈ | |
15 | 3, 6, 14 | wbr 5148 | . . . . . 6 wff 𝑧 ≈ 𝑦 |
16 | 2, 5 | wel 2107 | . . . . . 6 wff 𝑧 ∈ 𝑦 |
17 | 15, 16 | wo 845 | . . . . 5 wff (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦) |
18 | 6 | cpw 4602 | . . . . 5 class 𝒫 𝑦 |
19 | 17, 2, 18 | wral 3061 | . . . 4 wff ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦) |
20 | 13, 19 | wa 396 | . . 3 wff (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) |
21 | 20, 5 | cab 2709 | . 2 class {𝑦 ∣ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))} |
22 | 1, 21 | wceq 1541 | 1 wff Tarski = {𝑦 ∣ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))} |
Colors of variables: wff setvar class |
This definition is referenced by: eltskg 10744 |
Copyright terms: Public domain | W3C validator |