MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltskg Structured version   Visualization version   GIF version

Theorem eltskg 10490
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
eltskg (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Distinct variable group:   𝑤,𝑇,𝑧
Allowed substitution hints:   𝑉(𝑧,𝑤)

Proof of Theorem eltskg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3951 . . . . 5 (𝑦 = 𝑇 → (𝒫 𝑧𝑦 ↔ 𝒫 𝑧𝑇))
2 rexeq 3341 . . . . 5 (𝑦 = 𝑇 → (∃𝑤𝑦 𝒫 𝑧𝑤 ↔ ∃𝑤𝑇 𝒫 𝑧𝑤))
31, 2anbi12d 630 . . . 4 (𝑦 = 𝑇 → ((𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤)))
43raleqbi1dv 3338 . . 3 (𝑦 = 𝑇 → (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤)))
5 pweq 4554 . . . 4 (𝑦 = 𝑇 → 𝒫 𝑦 = 𝒫 𝑇)
6 breq2 5082 . . . . 5 (𝑦 = 𝑇 → (𝑧𝑦𝑧𝑇))
7 eleq2 2828 . . . . 5 (𝑦 = 𝑇 → (𝑧𝑦𝑧𝑇))
86, 7orbi12d 915 . . . 4 (𝑦 = 𝑇 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑇𝑧𝑇)))
95, 8raleqbidv 3334 . . 3 (𝑦 = 𝑇 → (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)))
104, 9anbi12d 630 . 2 (𝑦 = 𝑇 → ((∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
11 df-tsk 10489 . 2 Tarski = {𝑦 ∣ (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))}
1210, 11elab2g 3612 1 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1541  wcel 2109  wral 3065  wrex 3066  wss 3891  𝒫 cpw 4538   class class class wbr 5078  cen 8704  Tarskictsk 10488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-tsk 10489
This theorem is referenced by:  eltsk2g  10491  tskpwss  10492  tsken  10494  grothtsk  10575
  Copyright terms: Public domain W3C validator