MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltskg Structured version   Visualization version   GIF version

Theorem eltskg 10751
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
eltskg (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Distinct variable group:   𝑤,𝑇,𝑧
Allowed substitution hints:   𝑉(𝑧,𝑤)

Proof of Theorem eltskg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 4008 . . . . 5 (𝑦 = 𝑇 → (𝒫 𝑧𝑦 ↔ 𝒫 𝑧𝑇))
2 rexeq 3320 . . . . 5 (𝑦 = 𝑇 → (∃𝑤𝑦 𝒫 𝑧𝑤 ↔ ∃𝑤𝑇 𝒫 𝑧𝑤))
31, 2anbi12d 630 . . . 4 (𝑦 = 𝑇 → ((𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤)))
43raleqbi1dv 3332 . . 3 (𝑦 = 𝑇 → (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤)))
5 pweq 4616 . . . 4 (𝑦 = 𝑇 → 𝒫 𝑦 = 𝒫 𝑇)
6 breq2 5152 . . . . 5 (𝑦 = 𝑇 → (𝑧𝑦𝑧𝑇))
7 eleq2 2821 . . . . 5 (𝑦 = 𝑇 → (𝑧𝑦𝑧𝑇))
86, 7orbi12d 916 . . . 4 (𝑦 = 𝑇 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑇𝑧𝑇)))
95, 8raleqbidv 3341 . . 3 (𝑦 = 𝑇 → (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)))
104, 9anbi12d 630 . 2 (𝑦 = 𝑇 → ((∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
11 df-tsk 10750 . 2 Tarski = {𝑦 ∣ (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))}
1210, 11elab2g 3670 1 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  wral 3060  wrex 3069  wss 3948  𝒫 cpw 4602   class class class wbr 5148  cen 8942  Tarskictsk 10749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-tsk 10750
This theorem is referenced by:  eltsk2g  10752  tskpwss  10753  tsken  10755  grothtsk  10836
  Copyright terms: Public domain W3C validator