![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltskg | Structured version Visualization version GIF version |
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
eltskg | ⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4008 | . . . . 5 ⊢ (𝑦 = 𝑇 → (𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑧 ⊆ 𝑇)) | |
2 | rexeq 3320 | . . . . 5 ⊢ (𝑦 = 𝑇 → (∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ↔ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤)) | |
3 | 1, 2 | anbi12d 630 | . . . 4 ⊢ (𝑦 = 𝑇 → ((𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ↔ (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤))) |
4 | 3 | raleqbi1dv 3332 | . . 3 ⊢ (𝑦 = 𝑇 → (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ↔ ∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤))) |
5 | pweq 4616 | . . . 4 ⊢ (𝑦 = 𝑇 → 𝒫 𝑦 = 𝒫 𝑇) | |
6 | breq2 5152 | . . . . 5 ⊢ (𝑦 = 𝑇 → (𝑧 ≈ 𝑦 ↔ 𝑧 ≈ 𝑇)) | |
7 | eleq2 2821 | . . . . 5 ⊢ (𝑦 = 𝑇 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑇)) | |
8 | 6, 7 | orbi12d 916 | . . . 4 ⊢ (𝑦 = 𝑇 → ((𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦) ↔ (𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇))) |
9 | 5, 8 | raleqbidv 3341 | . . 3 ⊢ (𝑦 = 𝑇 → (∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇))) |
10 | 4, 9 | anbi12d 630 | . 2 ⊢ (𝑦 = 𝑇 → ((∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) |
11 | df-tsk 10750 | . 2 ⊢ Tarski = {𝑦 ∣ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))} | |
12 | 10, 11 | elab2g 3670 | 1 ⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 ⊆ wss 3948 𝒫 cpw 4602 class class class wbr 5148 ≈ cen 8942 Tarskictsk 10749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-tsk 10750 |
This theorem is referenced by: eltsk2g 10752 tskpwss 10753 tsken 10755 grothtsk 10836 |
Copyright terms: Public domain | W3C validator |