Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eltskg | Structured version Visualization version GIF version |
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
eltskg | ⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3951 | . . . . 5 ⊢ (𝑦 = 𝑇 → (𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑧 ⊆ 𝑇)) | |
2 | rexeq 3341 | . . . . 5 ⊢ (𝑦 = 𝑇 → (∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ↔ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤)) | |
3 | 1, 2 | anbi12d 630 | . . . 4 ⊢ (𝑦 = 𝑇 → ((𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ↔ (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤))) |
4 | 3 | raleqbi1dv 3338 | . . 3 ⊢ (𝑦 = 𝑇 → (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ↔ ∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤))) |
5 | pweq 4554 | . . . 4 ⊢ (𝑦 = 𝑇 → 𝒫 𝑦 = 𝒫 𝑇) | |
6 | breq2 5082 | . . . . 5 ⊢ (𝑦 = 𝑇 → (𝑧 ≈ 𝑦 ↔ 𝑧 ≈ 𝑇)) | |
7 | eleq2 2828 | . . . . 5 ⊢ (𝑦 = 𝑇 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑇)) | |
8 | 6, 7 | orbi12d 915 | . . . 4 ⊢ (𝑦 = 𝑇 → ((𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦) ↔ (𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇))) |
9 | 5, 8 | raleqbidv 3334 | . . 3 ⊢ (𝑦 = 𝑇 → (∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇))) |
10 | 4, 9 | anbi12d 630 | . 2 ⊢ (𝑦 = 𝑇 → ((∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) |
11 | df-tsk 10489 | . 2 ⊢ Tarski = {𝑦 ∣ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))} | |
12 | 10, 11 | elab2g 3612 | 1 ⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 ⊆ wss 3891 𝒫 cpw 4538 class class class wbr 5078 ≈ cen 8704 Tarskictsk 10488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-tsk 10489 |
This theorem is referenced by: eltsk2g 10491 tskpwss 10492 tsken 10494 grothtsk 10575 |
Copyright terms: Public domain | W3C validator |