| Metamath
Proof Explorer Theorem List (p. 108 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | gruina 10701 | If a Grothendieck universe 𝑈 is nonempty, then the height of the ordinals in 𝑈 is a strongly inaccessible cardinal. (Contributed by Mario Carneiro, 17-Jun-2013.) |
| ⊢ 𝐴 = (𝑈 ∩ On) ⇒ ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc) | ||
| Theorem | grur1a 10702 | A characterization of Grothendieck universes, part 1. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| ⊢ 𝐴 = (𝑈 ∩ On) ⇒ ⊢ (𝑈 ∈ Univ → (𝑅1‘𝐴) ⊆ 𝑈) | ||
| Theorem | grur1 10703 | A characterization of Grothendieck universes, part 2. (Contributed by Mario Carneiro, 24-Jun-2013.) |
| ⊢ 𝐴 = (𝑈 ∩ On) ⇒ ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → 𝑈 = (𝑅1‘𝐴)) | ||
| Theorem | grutsk1 10704 | Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni 10666.) (Contributed by Mario Carneiro, 17-Jun-2013.) |
| ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ) | ||
| Theorem | grutsk 10705 | Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
| ⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} | ||
| Axiom | ax-groth 10706* | The Tarski-Grothendieck Axiom. For every set 𝑥 there is an inaccessible cardinal 𝑦 such that 𝑦 is not in 𝑥. The addition of this axiom to ZFC set theory provides a framework for category theory, thus for all practical purposes giving us a complete foundation for "all of mathematics". This version of the axiom is used by the Mizar project (http://www.mizar.org/JFM/Axiomatics/tarski.html). Unlike the ZFC axioms, this axiom is very long when expressed in terms of primitive symbols (see grothprim 10717). An open problem is finding a shorter equivalent. (Contributed by NM, 18-Mar-2007.) |
| ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) | ||
| Theorem | axgroth5 10707* | The Tarski-Grothendieck axiom using abbreviations. (Contributed by NM, 22-Jun-2009.) |
| ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) | ||
| Theorem | axgroth2 10708* | Alternate version of the Tarski-Grothendieck Axiom. (Contributed by NM, 18-Mar-2007.) |
| ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) | ||
| Theorem | grothpw 10709* | Derive the Axiom of Power Sets ax-pow 5301 from the Tarski-Grothendieck axiom ax-groth 10706. That it follows is mentioned by Bob Solovay at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 10706. Note that ax-pow 5301 is not used by the proof. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.) |
| ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | grothpwex 10710 | Derive the Axiom of Power Sets from the Tarski-Grothendieck axiom ax-groth 10706. Note that ax-pow 5301 is not used by the proof. Use axpweq 5287 to obtain ax-pow 5301. Use pwex 5316 or pwexg 5314 instead. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.) |
| ⊢ 𝒫 𝑥 ∈ V | ||
| Theorem | axgroth6 10711* | The Tarski-Grothendieck axiom using abbreviations. This version is called Tarski's axiom: given a set 𝑥, there exists a set 𝑦 containing 𝑥, the subsets of the members of 𝑦, the power sets of the members of 𝑦, and the subsets of 𝑦 of cardinality less than that of 𝑦. (Contributed by NM, 21-Jun-2009.) |
| ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦)) | ||
| Theorem | grothomex 10712 | The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex 9528). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.) |
| ⊢ ω ∈ V | ||
| Theorem | grothac 10713 | The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 10352). This can be put in a more conventional form via ween 9918 and dfac8 10019. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 10019). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.) |
| ⊢ dom card = V | ||
| Theorem | axgroth3 10714* | Alternate version of the Tarski-Grothendieck Axiom. ax-cc 10318 is used to derive this version. (Contributed by NM, 26-Mar-2007.) |
| ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) | ||
| Theorem | axgroth4 10715* | Alternate version of the Tarski-Grothendieck Axiom. ax-ac 10342 is used to derive this version. (Contributed by NM, 16-Apr-2007.) |
| ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∃𝑣 ∈ 𝑦 ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) | ||
| Theorem | grothprimlem 10716* | Lemma for grothprim 10717. Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007.) |
| ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) | ||
| Theorem | grothprim 10717* | The Tarski-Grothendieck Axiom ax-groth 10706 expanded into set theory primitives using 163 symbols (allowing the defined symbols ∧, ∨, ↔, and ∃). An open problem is whether a shorter equivalent exists (when expanded to primitives). (Contributed by NM, 16-Apr-2007.) |
| ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧((𝑧 ∈ 𝑦 → ∃𝑣(𝑣 ∈ 𝑦 ∧ ∀𝑤(∀𝑢(𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧) → (𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣)))) ∧ ∃𝑤((𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦) → (∀𝑣((𝑣 ∈ 𝑧 → ∃𝑡∀𝑢(∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑣 ∨ ℎ = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣 ∈ 𝑦 → (𝑣 ∈ 𝑧 ∨ ∃𝑢(𝑢 ∈ 𝑧 ∧ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣))))))) ∨ 𝑧 ∈ 𝑦)))) | ||
| Theorem | grothtsk 10718 | The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.) |
| ⊢ ∪ Tarski = V | ||
| Theorem | inaprc 10719 | An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| ⊢ Inacc ∉ V | ||
| Syntax | ctskm 10720 | Extend class definition to include the map whose value is the smallest Tarski class. |
| class tarskiMap | ||
| Definition | df-tskm 10721* | A function that maps a set 𝑥 to the smallest Tarski class that contains the set. (Contributed by FL, 30-Dec-2010.) |
| ⊢ tarskiMap = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) | ||
| Theorem | tskmval 10722* | Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | ||
| Theorem | tskmid 10723 | The set 𝐴 is an element of the smallest Tarski class that contains 𝐴. CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) | ||
| Theorem | tskmcl 10724 | A Tarski class that contains 𝐴 is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (tarskiMap‘𝐴) ∈ Tarski | ||
| Theorem | sstskm 10725* | Being a part of (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) | ||
| Theorem | eltskm 10726* | Belonging to (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) | ||
This section derives the basics of real and complex numbers. We first construct and axiomatize real and complex numbers (e.g., ax-resscn 11055). After that, we derive their basic properties, various operations like addition (df-add 11009) and sine (df-sin 15968), and subsets such as the integers (df-z 12461) and natural numbers (df-nn 12118). | ||
| Syntax | cnpi 10727 |
The set of positive integers, which is the set of natural numbers ω
with 0 removed.
Note: This is the start of the Dedekind-cut construction of real and complex numbers. The last lemma of the construction is mulcnsrec 11027. The actual set of Dedekind cuts is defined by df-np 10864. |
| class N | ||
| Syntax | cpli 10728 | Positive integer addition. |
| class +N | ||
| Syntax | cmi 10729 | Positive integer multiplication. |
| class ·N | ||
| Syntax | clti 10730 | Positive integer ordering relation. |
| class <N | ||
| Syntax | cplpq 10731 | Positive pre-fraction addition. |
| class +pQ | ||
| Syntax | cmpq 10732 | Positive pre-fraction multiplication. |
| class ·pQ | ||
| Syntax | cltpq 10733 | Positive pre-fraction ordering relation. |
| class <pQ | ||
| Syntax | ceq 10734 | Equivalence class used to construct positive fractions. |
| class ~Q | ||
| Syntax | cnq 10735 | Set of positive fractions. |
| class Q | ||
| Syntax | c1q 10736 | The positive fraction constant 1. |
| class 1Q | ||
| Syntax | cerq 10737 | Positive fraction equivalence class. |
| class [Q] | ||
| Syntax | cplq 10738 | Positive fraction addition. |
| class +Q | ||
| Syntax | cmq 10739 | Positive fraction multiplication. |
| class ·Q | ||
| Syntax | crq 10740 | Positive fraction reciprocal operation. |
| class *Q | ||
| Syntax | cltq 10741 | Positive fraction ordering relation. |
| class <Q | ||
| Syntax | cnp 10742 | Set of positive reals. |
| class P | ||
| Syntax | c1p 10743 | Positive real constant 1. |
| class 1P | ||
| Syntax | cpp 10744 | Positive real addition. |
| class +P | ||
| Syntax | cmp 10745 | Positive real multiplication. |
| class ·P | ||
| Syntax | cltp 10746 | Positive real ordering relation. |
| class <P | ||
| Syntax | cer 10747 | Equivalence class used to construct signed reals. |
| class ~R | ||
| Syntax | cnr 10748 | Set of signed reals. |
| class R | ||
| Syntax | c0r 10749 | The signed real constant 0. |
| class 0R | ||
| Syntax | c1r 10750 | The signed real constant 1. |
| class 1R | ||
| Syntax | cm1r 10751 | The signed real constant -1. |
| class -1R | ||
| Syntax | cplr 10752 | Signed real addition. |
| class +R | ||
| Syntax | cmr 10753 | Signed real multiplication. |
| class ·R | ||
| Syntax | cltr 10754 | Signed real ordering relation. |
| class <R | ||
| Definition | df-ni 10755 | Define the class of positive integers. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| ⊢ N = (ω ∖ {∅}) | ||
| Definition | df-pli 10756 | Define addition on positive integers. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| ⊢ +N = ( +o ↾ (N × N)) | ||
| Definition | df-mi 10757 | Define multiplication on positive integers. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| ⊢ ·N = ( ·o ↾ (N × N)) | ||
| Definition | df-lti 10758 | Define 'less than' on positive integers. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. (Contributed by NM, 6-Feb-1996.) (New usage is discouraged.) |
| ⊢ <N = ( E ∩ (N × N)) | ||
| Theorem | elni 10759 | Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | ||
| Theorem | elni2 10760 | Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | ||
| Theorem | pinn 10761 | A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | ||
| Theorem | pion 10762 | A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ N → 𝐴 ∈ On) | ||
| Theorem | piord 10763 | A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ N → Ord 𝐴) | ||
| Theorem | niex 10764 | The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| ⊢ N ∈ V | ||
| Theorem | 0npi 10765 | The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| ⊢ ¬ ∅ ∈ N | ||
| Theorem | 1pi 10766 | Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.) |
| ⊢ 1o ∈ N | ||
| Theorem | addpiord 10767 | Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | ||
| Theorem | mulpiord 10768 | Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | ||
| Theorem | mulidpi 10769 | 1 is an identity element for multiplication on positive integers. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | ||
| Theorem | ltpiord 10770 | Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | ||
| Theorem | ltsopi 10771 | Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| ⊢ <N Or N | ||
| Theorem | ltrelpi 10772 | Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
| ⊢ <N ⊆ (N × N) | ||
| Theorem | dmaddpi 10773 | Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| ⊢ dom +N = (N × N) | ||
| Theorem | dmmulpi 10774 | Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| ⊢ dom ·N = (N × N) | ||
| Theorem | addclpi 10775 | Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) | ||
| Theorem | mulclpi 10776 | Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) | ||
| Theorem | addcompi 10777 | Addition of positive integers is commutative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
| ⊢ (𝐴 +N 𝐵) = (𝐵 +N 𝐴) | ||
| Theorem | addasspi 10778 | Addition of positive integers is associative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶)) | ||
| Theorem | mulcompi 10779 | Multiplication of positive integers is commutative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
| ⊢ (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴) | ||
| Theorem | mulasspi 10780 | Multiplication of positive integers is associative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)) | ||
| Theorem | distrpi 10781 | Multiplication of positive integers is distributive. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
| ⊢ (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) | ||
| Theorem | addcanpi 10782 | Addition cancellation law for positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | mulcanpi 10783 | Multiplication cancellation law for positive integers. (Contributed by NM, 4-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | addnidpi 10784 | There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ N → ¬ (𝐴 +N 𝐵) = 𝐴) | ||
| Theorem | ltexpi 10785* | Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵)) | ||
| Theorem | ltapi 10786 | Ordering property of addition for positive integers. (Contributed by NM, 7-Mar-1996.) (New usage is discouraged.) |
| ⊢ (𝐶 ∈ N → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) | ||
| Theorem | ltmpi 10787 | Ordering property of multiplication for positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
| ⊢ (𝐶 ∈ N → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵))) | ||
| Theorem | 1lt2pi 10788 | One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
| ⊢ 1o <N (1o +N 1o) | ||
| Theorem | nlt1pi 10789 | No positive integer is less than one. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
| ⊢ ¬ 𝐴 <N 1o | ||
| Theorem | indpi 10790* | Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
| ⊢ (𝑥 = 1o → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 +N 1o) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ N → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ N → 𝜏) | ||
| Definition | df-plpq 10791* | Define pre-addition on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. This "pre-addition" operation works directly with ordered pairs of integers. The actual positive fraction addition +Q (df-plq 10797) works with the equivalence classes of these ordered pairs determined by the equivalence relation ~Q (df-enq 10794). (Analogous remarks apply to the other "pre-" operations in the complex number construction that follows.) From Proposition 9-2.3 of [Gleason] p. 117. (Contributed by NM, 28-Aug-1995.) (New usage is discouraged.) |
| ⊢ +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | ||
| Definition | df-mpq 10792* | Define pre-multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 28-Aug-1995.) (New usage is discouraged.) |
| ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | ||
| Definition | df-ltpq 10793* | Define pre-ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 28-Aug-1995.) (New usage is discouraged.) |
| ⊢ <pQ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st ‘𝑥) ·N (2nd ‘𝑦)) <N ((1st ‘𝑦) ·N (2nd ‘𝑥)))} | ||
| Definition | df-enq 10794* | Define equivalence relation for positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. From Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
| ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | ||
| Definition | df-nq 10795* | Define class of positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. From Proposition 9-2.2 of [Gleason] p. 117. (Contributed by NM, 16-Aug-1995.) (New usage is discouraged.) |
| ⊢ Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))} | ||
| Definition | df-erq 10796 | Define a convenience function that "reduces" a fraction to lowest terms. Note that in this form, it is not obviously a function; we prove this in nqerf 10813. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
| ⊢ [Q] = ( ~Q ∩ ((N × N) × Q)) | ||
| Definition | df-plq 10797 | Define addition on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. From Proposition 9-2.3 of [Gleason] p. 117. (Contributed by NM, 24-Aug-1995.) (New usage is discouraged.) |
| ⊢ +Q = (([Q] ∘ +pQ ) ↾ (Q × Q)) | ||
| Definition | df-mq 10798 | Define multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 24-Aug-1995.) (New usage is discouraged.) |
| ⊢ ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q)) | ||
| Definition | df-1nq 10799 | Define positive fraction constant 1. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. From Proposition 9-2.2 of [Gleason] p. 117. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.) |
| ⊢ 1Q = 〈1o, 1o〉 | ||
| Definition | df-rq 10800 | Define reciprocal on positive fractions. It means the same thing as one divided by the argument (although we don't define full division since we will never need it). This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. From Proposition 9-2.5 of [Gleason] p. 119, who uses an asterisk to denote this unary operation. (Contributed by NM, 6-Mar-1996.) (New usage is discouraged.) |
| ⊢ *Q = (◡ ·Q “ {1Q}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |