Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ub Structured version   Visualization version   GIF version

Definition df-ub 33915
Description: Define the upper bound relationship functor. See brub 33993 for value. (Contributed by Scott Fenton, 3-May-2018.)
Assertion
Ref Expression
df-ub UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ E ))

Detailed syntax breakdown of Definition df-ub
StepHypRef Expression
1 cR . . 3 class 𝑅
21cub 33891 . 2 class UB𝑅
3 cvv 3408 . . . 4 class V
43, 3cxp 5549 . . 3 class (V × V)
53, 1cdif 3863 . . . 4 class (V ∖ 𝑅)
6 cep 5459 . . . . 5 class E
76ccnv 5550 . . . 4 class E
85, 7ccom 5555 . . 3 class ((V ∖ 𝑅) ∘ E )
94, 8cdif 3863 . 2 class ((V × V) ∖ ((V ∖ 𝑅) ∘ E ))
102, 9wceq 1543 1 wff UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ E ))
Colors of variables: wff setvar class
This definition is referenced by:  brub  33993
  Copyright terms: Public domain W3C validator