|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-fullfun | Structured version Visualization version GIF version | ||
| Description: Define the full function over 𝐹. This is a function with domain V that always agrees with 𝐹 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) | 
| Ref | Expression | 
|---|---|
| df-fullfun | ⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cF | . . 3 class 𝐹 | |
| 2 | 1 | cfullfn 35852 | . 2 class FullFun𝐹 | 
| 3 | 1 | cfunpart 35851 | . . 3 class Funpart𝐹 | 
| 4 | cvv 3479 | . . . . 5 class V | |
| 5 | 3 | cdm 5684 | . . . . 5 class dom Funpart𝐹 | 
| 6 | 4, 5 | cdif 3947 | . . . 4 class (V ∖ dom Funpart𝐹) | 
| 7 | c0 4332 | . . . . 5 class ∅ | |
| 8 | 7 | csn 4625 | . . . 4 class {∅} | 
| 9 | 6, 8 | cxp 5682 | . . 3 class ((V ∖ dom Funpart𝐹) × {∅}) | 
| 10 | 3, 9 | cun 3948 | . 2 class (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) | 
| 11 | 2, 10 | wceq 1539 | 1 wff FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: fullfunfnv 35948 fullfunfv 35949 | 
| Copyright terms: Public domain | W3C validator |