Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-fullfun | Structured version Visualization version GIF version |
Description: Define the full function over 𝐹. This is a function with domain V that always agrees with 𝐹 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) |
Ref | Expression |
---|---|
df-fullfun | ⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cF | . . 3 class 𝐹 | |
2 | 1 | cfullfn 34152 | . 2 class FullFun𝐹 |
3 | 1 | cfunpart 34151 | . . 3 class Funpart𝐹 |
4 | cvv 3432 | . . . . 5 class V | |
5 | 3 | cdm 5589 | . . . . 5 class dom Funpart𝐹 |
6 | 4, 5 | cdif 3884 | . . . 4 class (V ∖ dom Funpart𝐹) |
7 | c0 4256 | . . . . 5 class ∅ | |
8 | 7 | csn 4561 | . . . 4 class {∅} |
9 | 6, 8 | cxp 5587 | . . 3 class ((V ∖ dom Funpart𝐹) × {∅}) |
10 | 3, 9 | cun 3885 | . 2 class (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) |
11 | 2, 10 | wceq 1539 | 1 wff FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) |
Colors of variables: wff setvar class |
This definition is referenced by: fullfunfnv 34248 fullfunfv 34249 |
Copyright terms: Public domain | W3C validator |