Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brub Structured version   Visualization version   GIF version

Theorem brub 34914
Description: Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.)
Hypotheses
Ref Expression
brub.1 𝑆 ∈ V
brub.2 𝐴 ∈ V
Assertion
Ref Expression
brub (𝑆UB𝑅𝐴 ↔ ∀𝑥𝑆 𝑥𝑅𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑆

Proof of Theorem brub
StepHypRef Expression
1 brub.1 . . . . 5 𝑆 ∈ V
2 brub.2 . . . . 5 𝐴 ∈ V
3 brxp 5723 . . . . 5 (𝑆(V × V)𝐴 ↔ (𝑆 ∈ V ∧ 𝐴 ∈ V))
41, 2, 3mpbir2an 709 . . . 4 𝑆(V × V)𝐴
5 brdif 5200 . . . 4 (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ E ))𝐴 ↔ (𝑆(V × V)𝐴 ∧ ¬ 𝑆((V ∖ 𝑅) ∘ E )𝐴))
64, 5mpbiran 707 . . 3 (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ E ))𝐴 ↔ ¬ 𝑆((V ∖ 𝑅) ∘ E )𝐴)
71, 2coepr 34711 . . 3 (𝑆((V ∖ 𝑅) ∘ E )𝐴 ↔ ∃𝑥𝑆 𝑥(V ∖ 𝑅)𝐴)
86, 7xchbinx 333 . 2 (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ E ))𝐴 ↔ ¬ ∃𝑥𝑆 𝑥(V ∖ 𝑅)𝐴)
9 df-ub 34836 . . 3 UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ E ))
109breqi 5153 . 2 (𝑆UB𝑅𝐴𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ E ))𝐴)
11 brv 5471 . . . . . 6 𝑥V𝐴
12 brdif 5200 . . . . . 6 (𝑥(V ∖ 𝑅)𝐴 ↔ (𝑥V𝐴 ∧ ¬ 𝑥𝑅𝐴))
1311, 12mpbiran 707 . . . . 5 (𝑥(V ∖ 𝑅)𝐴 ↔ ¬ 𝑥𝑅𝐴)
1413rexbii 3094 . . . 4 (∃𝑥𝑆 𝑥(V ∖ 𝑅)𝐴 ↔ ∃𝑥𝑆 ¬ 𝑥𝑅𝐴)
15 rexnal 3100 . . . 4 (∃𝑥𝑆 ¬ 𝑥𝑅𝐴 ↔ ¬ ∀𝑥𝑆 𝑥𝑅𝐴)
1614, 15bitri 274 . . 3 (∃𝑥𝑆 𝑥(V ∖ 𝑅)𝐴 ↔ ¬ ∀𝑥𝑆 𝑥𝑅𝐴)
1716con2bii 357 . 2 (∀𝑥𝑆 𝑥𝑅𝐴 ↔ ¬ ∃𝑥𝑆 𝑥(V ∖ 𝑅)𝐴)
188, 10, 173bitr4i 302 1 (𝑆UB𝑅𝐴 ↔ ∀𝑥𝑆 𝑥𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  cdif 3944   class class class wbr 5147   E cep 5578   × cxp 5673  ccnv 5674  ccom 5679  UBcub 34812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-eprel 5579  df-xp 5681  df-cnv 5683  df-co 5684  df-ub 34836
This theorem is referenced by:  brlb  34915
  Copyright terms: Public domain W3C validator