Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brub Structured version   Visualization version   GIF version

Theorem brub 34183
Description: Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.)
Hypotheses
Ref Expression
brub.1 𝑆 ∈ V
brub.2 𝐴 ∈ V
Assertion
Ref Expression
brub (𝑆UB𝑅𝐴 ↔ ∀𝑥𝑆 𝑥𝑅𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑆

Proof of Theorem brub
StepHypRef Expression
1 brub.1 . . . . 5 𝑆 ∈ V
2 brub.2 . . . . 5 𝐴 ∈ V
3 brxp 5627 . . . . 5 (𝑆(V × V)𝐴 ↔ (𝑆 ∈ V ∧ 𝐴 ∈ V))
41, 2, 3mpbir2an 707 . . . 4 𝑆(V × V)𝐴
5 brdif 5123 . . . 4 (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ E ))𝐴 ↔ (𝑆(V × V)𝐴 ∧ ¬ 𝑆((V ∖ 𝑅) ∘ E )𝐴))
64, 5mpbiran 705 . . 3 (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ E ))𝐴 ↔ ¬ 𝑆((V ∖ 𝑅) ∘ E )𝐴)
71, 2coepr 33626 . . 3 (𝑆((V ∖ 𝑅) ∘ E )𝐴 ↔ ∃𝑥𝑆 𝑥(V ∖ 𝑅)𝐴)
86, 7xchbinx 333 . 2 (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ E ))𝐴 ↔ ¬ ∃𝑥𝑆 𝑥(V ∖ 𝑅)𝐴)
9 df-ub 34105 . . 3 UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ E ))
109breqi 5076 . 2 (𝑆UB𝑅𝐴𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ E ))𝐴)
11 brv 5381 . . . . . 6 𝑥V𝐴
12 brdif 5123 . . . . . 6 (𝑥(V ∖ 𝑅)𝐴 ↔ (𝑥V𝐴 ∧ ¬ 𝑥𝑅𝐴))
1311, 12mpbiran 705 . . . . 5 (𝑥(V ∖ 𝑅)𝐴 ↔ ¬ 𝑥𝑅𝐴)
1413rexbii 3177 . . . 4 (∃𝑥𝑆 𝑥(V ∖ 𝑅)𝐴 ↔ ∃𝑥𝑆 ¬ 𝑥𝑅𝐴)
15 rexnal 3165 . . . 4 (∃𝑥𝑆 ¬ 𝑥𝑅𝐴 ↔ ¬ ∀𝑥𝑆 𝑥𝑅𝐴)
1614, 15bitri 274 . . 3 (∃𝑥𝑆 𝑥(V ∖ 𝑅)𝐴 ↔ ¬ ∀𝑥𝑆 𝑥𝑅𝐴)
1716con2bii 357 . 2 (∀𝑥𝑆 𝑥𝑅𝐴 ↔ ¬ ∃𝑥𝑆 𝑥(V ∖ 𝑅)𝐴)
188, 10, 173bitr4i 302 1 (𝑆UB𝑅𝐴 ↔ ∀𝑥𝑆 𝑥𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880   class class class wbr 5070   E cep 5485   × cxp 5578  ccnv 5579  ccom 5584  UBcub 34081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-xp 5586  df-cnv 5588  df-co 5589  df-ub 34105
This theorem is referenced by:  brlb  34184
  Copyright terms: Public domain W3C validator