![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brub | Structured version Visualization version GIF version |
Description: Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
Ref | Expression |
---|---|
brub.1 | ⊢ 𝑆 ∈ V |
brub.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
brub | ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brub.1 | . . . . 5 ⊢ 𝑆 ∈ V | |
2 | brub.2 | . . . . 5 ⊢ 𝐴 ∈ V | |
3 | brxp 5401 | . . . . 5 ⊢ (𝑆(V × V)𝐴 ↔ (𝑆 ∈ V ∧ 𝐴 ∈ V)) | |
4 | 1, 2, 3 | mpbir2an 701 | . . . 4 ⊢ 𝑆(V × V)𝐴 |
5 | brdif 4939 | . . . 4 ⊢ (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴 ↔ (𝑆(V × V)𝐴 ∧ ¬ 𝑆((V ∖ 𝑅) ∘ ◡ E )𝐴)) | |
6 | 4, 5 | mpbiran 699 | . . 3 ⊢ (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴 ↔ ¬ 𝑆((V ∖ 𝑅) ∘ ◡ E )𝐴) |
7 | 1, 2 | coepr 32250 | . . 3 ⊢ (𝑆((V ∖ 𝑅) ∘ ◡ E )𝐴 ↔ ∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴) |
8 | 6, 7 | xchbinx 326 | . 2 ⊢ (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴 ↔ ¬ ∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴) |
9 | df-ub 32586 | . . 3 ⊢ UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E )) | |
10 | 9 | breqi 4892 | . 2 ⊢ (𝑆UB𝑅𝐴 ↔ 𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴) |
11 | brv 5172 | . . . . . 6 ⊢ 𝑥V𝐴 | |
12 | brdif 4939 | . . . . . 6 ⊢ (𝑥(V ∖ 𝑅)𝐴 ↔ (𝑥V𝐴 ∧ ¬ 𝑥𝑅𝐴)) | |
13 | 11, 12 | mpbiran 699 | . . . . 5 ⊢ (𝑥(V ∖ 𝑅)𝐴 ↔ ¬ 𝑥𝑅𝐴) |
14 | 13 | rexbii 3223 | . . . 4 ⊢ (∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴 ↔ ∃𝑥 ∈ 𝑆 ¬ 𝑥𝑅𝐴) |
15 | rexnal 3175 | . . . 4 ⊢ (∃𝑥 ∈ 𝑆 ¬ 𝑥𝑅𝐴 ↔ ¬ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) | |
16 | 14, 15 | bitri 267 | . . 3 ⊢ (∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴 ↔ ¬ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) |
17 | 16 | con2bii 349 | . 2 ⊢ (∀𝑥 ∈ 𝑆 𝑥𝑅𝐴 ↔ ¬ ∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴) |
18 | 8, 10, 17 | 3bitr4i 295 | 1 ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∈ wcel 2106 ∀wral 3089 ∃wrex 3090 Vcvv 3397 ∖ cdif 3788 class class class wbr 4886 E cep 5265 × cxp 5353 ◡ccnv 5354 ∘ ccom 5359 UBcub 32562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4887 df-opab 4949 df-eprel 5266 df-xp 5361 df-cnv 5363 df-co 5364 df-ub 32586 |
This theorem is referenced by: brlb 32665 |
Copyright terms: Public domain | W3C validator |