![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brub | Structured version Visualization version GIF version |
Description: Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
Ref | Expression |
---|---|
brub.1 | ⊢ 𝑆 ∈ V |
brub.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
brub | ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brub.1 | . . . . 5 ⊢ 𝑆 ∈ V | |
2 | brub.2 | . . . . 5 ⊢ 𝐴 ∈ V | |
3 | brxp 5749 | . . . . 5 ⊢ (𝑆(V × V)𝐴 ↔ (𝑆 ∈ V ∧ 𝐴 ∈ V)) | |
4 | 1, 2, 3 | mpbir2an 710 | . . . 4 ⊢ 𝑆(V × V)𝐴 |
5 | brdif 5219 | . . . 4 ⊢ (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴 ↔ (𝑆(V × V)𝐴 ∧ ¬ 𝑆((V ∖ 𝑅) ∘ ◡ E )𝐴)) | |
6 | 4, 5 | mpbiran 708 | . . 3 ⊢ (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴 ↔ ¬ 𝑆((V ∖ 𝑅) ∘ ◡ E )𝐴) |
7 | 1, 2 | coepr 35715 | . . 3 ⊢ (𝑆((V ∖ 𝑅) ∘ ◡ E )𝐴 ↔ ∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴) |
8 | 6, 7 | xchbinx 334 | . 2 ⊢ (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴 ↔ ¬ ∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴) |
9 | df-ub 35840 | . . 3 ⊢ UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E )) | |
10 | 9 | breqi 5172 | . 2 ⊢ (𝑆UB𝑅𝐴 ↔ 𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴) |
11 | brv 5492 | . . . . . 6 ⊢ 𝑥V𝐴 | |
12 | brdif 5219 | . . . . . 6 ⊢ (𝑥(V ∖ 𝑅)𝐴 ↔ (𝑥V𝐴 ∧ ¬ 𝑥𝑅𝐴)) | |
13 | 11, 12 | mpbiran 708 | . . . . 5 ⊢ (𝑥(V ∖ 𝑅)𝐴 ↔ ¬ 𝑥𝑅𝐴) |
14 | 13 | rexbii 3100 | . . . 4 ⊢ (∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴 ↔ ∃𝑥 ∈ 𝑆 ¬ 𝑥𝑅𝐴) |
15 | rexnal 3106 | . . . 4 ⊢ (∃𝑥 ∈ 𝑆 ¬ 𝑥𝑅𝐴 ↔ ¬ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) | |
16 | 14, 15 | bitri 275 | . . 3 ⊢ (∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴 ↔ ¬ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) |
17 | 16 | con2bii 357 | . 2 ⊢ (∀𝑥 ∈ 𝑆 𝑥𝑅𝐴 ↔ ¬ ∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴) |
18 | 8, 10, 17 | 3bitr4i 303 | 1 ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∖ cdif 3973 class class class wbr 5166 E cep 5598 × cxp 5698 ◡ccnv 5699 ∘ ccom 5704 UBcub 35816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5706 df-cnv 5708 df-co 5709 df-ub 35840 |
This theorem is referenced by: brlb 35919 |
Copyright terms: Public domain | W3C validator |