Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brub | Structured version Visualization version GIF version |
Description: Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
Ref | Expression |
---|---|
brub.1 | ⊢ 𝑆 ∈ V |
brub.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
brub | ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brub.1 | . . . . 5 ⊢ 𝑆 ∈ V | |
2 | brub.2 | . . . . 5 ⊢ 𝐴 ∈ V | |
3 | brxp 5636 | . . . . 5 ⊢ (𝑆(V × V)𝐴 ↔ (𝑆 ∈ V ∧ 𝐴 ∈ V)) | |
4 | 1, 2, 3 | mpbir2an 708 | . . . 4 ⊢ 𝑆(V × V)𝐴 |
5 | brdif 5127 | . . . 4 ⊢ (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴 ↔ (𝑆(V × V)𝐴 ∧ ¬ 𝑆((V ∖ 𝑅) ∘ ◡ E )𝐴)) | |
6 | 4, 5 | mpbiran 706 | . . 3 ⊢ (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴 ↔ ¬ 𝑆((V ∖ 𝑅) ∘ ◡ E )𝐴) |
7 | 1, 2 | coepr 33720 | . . 3 ⊢ (𝑆((V ∖ 𝑅) ∘ ◡ E )𝐴 ↔ ∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴) |
8 | 6, 7 | xchbinx 334 | . 2 ⊢ (𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴 ↔ ¬ ∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴) |
9 | df-ub 34178 | . . 3 ⊢ UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E )) | |
10 | 9 | breqi 5080 | . 2 ⊢ (𝑆UB𝑅𝐴 ↔ 𝑆((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E ))𝐴) |
11 | brv 5387 | . . . . . 6 ⊢ 𝑥V𝐴 | |
12 | brdif 5127 | . . . . . 6 ⊢ (𝑥(V ∖ 𝑅)𝐴 ↔ (𝑥V𝐴 ∧ ¬ 𝑥𝑅𝐴)) | |
13 | 11, 12 | mpbiran 706 | . . . . 5 ⊢ (𝑥(V ∖ 𝑅)𝐴 ↔ ¬ 𝑥𝑅𝐴) |
14 | 13 | rexbii 3181 | . . . 4 ⊢ (∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴 ↔ ∃𝑥 ∈ 𝑆 ¬ 𝑥𝑅𝐴) |
15 | rexnal 3169 | . . . 4 ⊢ (∃𝑥 ∈ 𝑆 ¬ 𝑥𝑅𝐴 ↔ ¬ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) | |
16 | 14, 15 | bitri 274 | . . 3 ⊢ (∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴 ↔ ¬ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) |
17 | 16 | con2bii 358 | . 2 ⊢ (∀𝑥 ∈ 𝑆 𝑥𝑅𝐴 ↔ ¬ ∃𝑥 ∈ 𝑆 𝑥(V ∖ 𝑅)𝐴) |
18 | 8, 10, 17 | 3bitr4i 303 | 1 ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∖ cdif 3884 class class class wbr 5074 E cep 5494 × cxp 5587 ◡ccnv 5588 ∘ ccom 5593 UBcub 34154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-xp 5595 df-cnv 5597 df-co 5598 df-ub 34178 |
This theorem is referenced by: brlb 34257 |
Copyright terms: Public domain | W3C validator |