Detailed syntax breakdown of Definition df-uhgr
| Step | Hyp | Ref
| Expression |
| 1 | | cuhgr 29073 |
. 2
class
UHGraph |
| 2 | | ve |
. . . . . . . 8
setvar 𝑒 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑒 |
| 4 | 3 | cdm 5685 |
. . . . . 6
class dom 𝑒 |
| 5 | | vv |
. . . . . . . . 9
setvar 𝑣 |
| 6 | 5 | cv 1539 |
. . . . . . . 8
class 𝑣 |
| 7 | 6 | cpw 4600 |
. . . . . . 7
class 𝒫
𝑣 |
| 8 | | c0 4333 |
. . . . . . . 8
class
∅ |
| 9 | 8 | csn 4626 |
. . . . . . 7
class
{∅} |
| 10 | 7, 9 | cdif 3948 |
. . . . . 6
class
(𝒫 𝑣 ∖
{∅}) |
| 11 | 4, 10, 3 | wf 6557 |
. . . . 5
wff 𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) |
| 12 | | vg |
. . . . . . 7
setvar 𝑔 |
| 13 | 12 | cv 1539 |
. . . . . 6
class 𝑔 |
| 14 | | ciedg 29014 |
. . . . . 6
class
iEdg |
| 15 | 13, 14 | cfv 6561 |
. . . . 5
class
(iEdg‘𝑔) |
| 16 | 11, 2, 15 | wsbc 3788 |
. . . 4
wff
[(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) |
| 17 | | cvtx 29013 |
. . . . 5
class
Vtx |
| 18 | 13, 17 | cfv 6561 |
. . . 4
class
(Vtx‘𝑔) |
| 19 | 16, 5, 18 | wsbc 3788 |
. . 3
wff
[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) |
| 20 | 19, 12 | cab 2714 |
. 2
class {𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} |
| 21 | 1, 20 | wceq 1540 |
1
wff UHGraph =
{𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} |