| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ushgr | Structured version Visualization version GIF version | ||
| Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.) |
| Ref | Expression |
|---|---|
| df-ushgr | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cushgr 29020 | . 2 class USHGraph | |
| 2 | ve | . . . . . . . 8 setvar 𝑒 | |
| 3 | 2 | cv 1539 | . . . . . . 7 class 𝑒 |
| 4 | 3 | cdm 5623 | . . . . . 6 class dom 𝑒 |
| 5 | vv | . . . . . . . . 9 setvar 𝑣 | |
| 6 | 5 | cv 1539 | . . . . . . . 8 class 𝑣 |
| 7 | 6 | cpw 4553 | . . . . . . 7 class 𝒫 𝑣 |
| 8 | c0 4286 | . . . . . . . 8 class ∅ | |
| 9 | 8 | csn 4579 | . . . . . . 7 class {∅} |
| 10 | 7, 9 | cdif 3902 | . . . . . 6 class (𝒫 𝑣 ∖ {∅}) |
| 11 | 4, 10, 3 | wf1 6483 | . . . . 5 wff 𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 12 | vg | . . . . . . 7 setvar 𝑔 | |
| 13 | 12 | cv 1539 | . . . . . 6 class 𝑔 |
| 14 | ciedg 28960 | . . . . . 6 class iEdg | |
| 15 | 13, 14 | cfv 6486 | . . . . 5 class (iEdg‘𝑔) |
| 16 | 11, 2, 15 | wsbc 3744 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 17 | cvtx 28959 | . . . . 5 class Vtx | |
| 18 | 13, 17 | cfv 6486 | . . . 4 class (Vtx‘𝑔) |
| 19 | 16, 5, 18 | wsbc 3744 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 20 | 19, 12 | cab 2707 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| 21 | 1, 20 | wceq 1540 | 1 wff USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isushgr 29024 |
| Copyright terms: Public domain | W3C validator |