![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ushgr | Structured version Visualization version GIF version |
Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.) |
Ref | Expression |
---|---|
df-ushgr | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cushgr 28898 | . 2 class USHGraph | |
2 | ve | . . . . . . . 8 setvar 𝑒 | |
3 | 2 | cv 1532 | . . . . . . 7 class 𝑒 |
4 | 3 | cdm 5682 | . . . . . 6 class dom 𝑒 |
5 | vv | . . . . . . . . 9 setvar 𝑣 | |
6 | 5 | cv 1532 | . . . . . . . 8 class 𝑣 |
7 | 6 | cpw 4606 | . . . . . . 7 class 𝒫 𝑣 |
8 | c0 4326 | . . . . . . . 8 class ∅ | |
9 | 8 | csn 4632 | . . . . . . 7 class {∅} |
10 | 7, 9 | cdif 3946 | . . . . . 6 class (𝒫 𝑣 ∖ {∅}) |
11 | 4, 10, 3 | wf1 6550 | . . . . 5 wff 𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
12 | vg | . . . . . . 7 setvar 𝑔 | |
13 | 12 | cv 1532 | . . . . . 6 class 𝑔 |
14 | ciedg 28838 | . . . . . 6 class iEdg | |
15 | 13, 14 | cfv 6553 | . . . . 5 class (iEdg‘𝑔) |
16 | 11, 2, 15 | wsbc 3778 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
17 | cvtx 28837 | . . . . 5 class Vtx | |
18 | 13, 17 | cfv 6553 | . . . 4 class (Vtx‘𝑔) |
19 | 16, 5, 18 | wsbc 3778 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
20 | 19, 12 | cab 2705 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
21 | 1, 20 | wceq 1533 | 1 wff USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
Colors of variables: wff setvar class |
This definition is referenced by: isushgr 28902 |
Copyright terms: Public domain | W3C validator |