| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ushgr | Structured version Visualization version GIF version | ||
| Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.) |
| Ref | Expression |
|---|---|
| df-ushgr | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cushgr 29033 | . 2 class USHGraph | |
| 2 | ve | . . . . . . . 8 setvar 𝑒 | |
| 3 | 2 | cv 1540 | . . . . . . 7 class 𝑒 |
| 4 | 3 | cdm 5616 | . . . . . 6 class dom 𝑒 |
| 5 | vv | . . . . . . . . 9 setvar 𝑣 | |
| 6 | 5 | cv 1540 | . . . . . . . 8 class 𝑣 |
| 7 | 6 | cpw 4550 | . . . . . . 7 class 𝒫 𝑣 |
| 8 | c0 4283 | . . . . . . . 8 class ∅ | |
| 9 | 8 | csn 4576 | . . . . . . 7 class {∅} |
| 10 | 7, 9 | cdif 3899 | . . . . . 6 class (𝒫 𝑣 ∖ {∅}) |
| 11 | 4, 10, 3 | wf1 6478 | . . . . 5 wff 𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 12 | vg | . . . . . . 7 setvar 𝑔 | |
| 13 | 12 | cv 1540 | . . . . . 6 class 𝑔 |
| 14 | ciedg 28973 | . . . . . 6 class iEdg | |
| 15 | 13, 14 | cfv 6481 | . . . . 5 class (iEdg‘𝑔) |
| 16 | 11, 2, 15 | wsbc 3741 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 17 | cvtx 28972 | . . . . 5 class Vtx | |
| 18 | 13, 17 | cfv 6481 | . . . 4 class (Vtx‘𝑔) |
| 19 | 16, 5, 18 | wsbc 3741 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 20 | 19, 12 | cab 2709 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| 21 | 1, 20 | wceq 1541 | 1 wff USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isushgr 29037 |
| Copyright terms: Public domain | W3C validator |