![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ushgr | Structured version Visualization version GIF version |
Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.) |
Ref | Expression |
---|---|
df-ushgr | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cushgr 26545 | . 2 class USHGraph | |
2 | ve | . . . . . . . 8 setvar 𝑒 | |
3 | 2 | cv 1506 | . . . . . . 7 class 𝑒 |
4 | 3 | cdm 5407 | . . . . . 6 class dom 𝑒 |
5 | vv | . . . . . . . . 9 setvar 𝑣 | |
6 | 5 | cv 1506 | . . . . . . . 8 class 𝑣 |
7 | 6 | cpw 4422 | . . . . . . 7 class 𝒫 𝑣 |
8 | c0 4178 | . . . . . . . 8 class ∅ | |
9 | 8 | csn 4441 | . . . . . . 7 class {∅} |
10 | 7, 9 | cdif 3826 | . . . . . 6 class (𝒫 𝑣 ∖ {∅}) |
11 | 4, 10, 3 | wf1 6185 | . . . . 5 wff 𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
12 | vg | . . . . . . 7 setvar 𝑔 | |
13 | 12 | cv 1506 | . . . . . 6 class 𝑔 |
14 | ciedg 26485 | . . . . . 6 class iEdg | |
15 | 13, 14 | cfv 6188 | . . . . 5 class (iEdg‘𝑔) |
16 | 11, 2, 15 | wsbc 3681 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
17 | cvtx 26484 | . . . . 5 class Vtx | |
18 | 13, 17 | cfv 6188 | . . . 4 class (Vtx‘𝑔) |
19 | 16, 5, 18 | wsbc 3681 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
20 | 19, 12 | cab 2758 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
21 | 1, 20 | wceq 1507 | 1 wff USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
Colors of variables: wff setvar class |
This definition is referenced by: isushgr 26549 |
Copyright terms: Public domain | W3C validator |