| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ushgr | Structured version Visualization version GIF version | ||
| Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.) |
| Ref | Expression |
|---|---|
| df-ushgr | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cushgr 29036 | . 2 class USHGraph | |
| 2 | ve | . . . . . . . 8 setvar 𝑒 | |
| 3 | 2 | cv 1539 | . . . . . . 7 class 𝑒 |
| 4 | 3 | cdm 5654 | . . . . . 6 class dom 𝑒 |
| 5 | vv | . . . . . . . . 9 setvar 𝑣 | |
| 6 | 5 | cv 1539 | . . . . . . . 8 class 𝑣 |
| 7 | 6 | cpw 4575 | . . . . . . 7 class 𝒫 𝑣 |
| 8 | c0 4308 | . . . . . . . 8 class ∅ | |
| 9 | 8 | csn 4601 | . . . . . . 7 class {∅} |
| 10 | 7, 9 | cdif 3923 | . . . . . 6 class (𝒫 𝑣 ∖ {∅}) |
| 11 | 4, 10, 3 | wf1 6528 | . . . . 5 wff 𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 12 | vg | . . . . . . 7 setvar 𝑔 | |
| 13 | 12 | cv 1539 | . . . . . 6 class 𝑔 |
| 14 | ciedg 28976 | . . . . . 6 class iEdg | |
| 15 | 13, 14 | cfv 6531 | . . . . 5 class (iEdg‘𝑔) |
| 16 | 11, 2, 15 | wsbc 3765 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 17 | cvtx 28975 | . . . . 5 class Vtx | |
| 18 | 13, 17 | cfv 6531 | . . . 4 class (Vtx‘𝑔) |
| 19 | 16, 5, 18 | wsbc 3765 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 20 | 19, 12 | cab 2713 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| 21 | 1, 20 | wceq 1540 | 1 wff USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isushgr 29040 |
| Copyright terms: Public domain | W3C validator |