| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ushgr | Structured version Visualization version GIF version | ||
| Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.) |
| Ref | Expression |
|---|---|
| df-ushgr | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cushgr 28991 | . 2 class USHGraph | |
| 2 | ve | . . . . . . . 8 setvar 𝑒 | |
| 3 | 2 | cv 1539 | . . . . . . 7 class 𝑒 |
| 4 | 3 | cdm 5641 | . . . . . 6 class dom 𝑒 |
| 5 | vv | . . . . . . . . 9 setvar 𝑣 | |
| 6 | 5 | cv 1539 | . . . . . . . 8 class 𝑣 |
| 7 | 6 | cpw 4566 | . . . . . . 7 class 𝒫 𝑣 |
| 8 | c0 4299 | . . . . . . . 8 class ∅ | |
| 9 | 8 | csn 4592 | . . . . . . 7 class {∅} |
| 10 | 7, 9 | cdif 3914 | . . . . . 6 class (𝒫 𝑣 ∖ {∅}) |
| 11 | 4, 10, 3 | wf1 6511 | . . . . 5 wff 𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 12 | vg | . . . . . . 7 setvar 𝑔 | |
| 13 | 12 | cv 1539 | . . . . . 6 class 𝑔 |
| 14 | ciedg 28931 | . . . . . 6 class iEdg | |
| 15 | 13, 14 | cfv 6514 | . . . . 5 class (iEdg‘𝑔) |
| 16 | 11, 2, 15 | wsbc 3756 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 17 | cvtx 28930 | . . . . 5 class Vtx | |
| 18 | 13, 17 | cfv 6514 | . . . 4 class (Vtx‘𝑔) |
| 19 | 16, 5, 18 | wsbc 3756 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
| 20 | 19, 12 | cab 2708 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| 21 | 1, 20 | wceq 1540 | 1 wff USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isushgr 28995 |
| Copyright terms: Public domain | W3C validator |