![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ushgr | Structured version Visualization version GIF version |
Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.) |
Ref | Expression |
---|---|
df-ushgr | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cushgr 29092 | . 2 class USHGraph | |
2 | ve | . . . . . . . 8 setvar 𝑒 | |
3 | 2 | cv 1536 | . . . . . . 7 class 𝑒 |
4 | 3 | cdm 5700 | . . . . . 6 class dom 𝑒 |
5 | vv | . . . . . . . . 9 setvar 𝑣 | |
6 | 5 | cv 1536 | . . . . . . . 8 class 𝑣 |
7 | 6 | cpw 4622 | . . . . . . 7 class 𝒫 𝑣 |
8 | c0 4352 | . . . . . . . 8 class ∅ | |
9 | 8 | csn 4648 | . . . . . . 7 class {∅} |
10 | 7, 9 | cdif 3973 | . . . . . 6 class (𝒫 𝑣 ∖ {∅}) |
11 | 4, 10, 3 | wf1 6570 | . . . . 5 wff 𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
12 | vg | . . . . . . 7 setvar 𝑔 | |
13 | 12 | cv 1536 | . . . . . 6 class 𝑔 |
14 | ciedg 29032 | . . . . . 6 class iEdg | |
15 | 13, 14 | cfv 6573 | . . . . 5 class (iEdg‘𝑔) |
16 | 11, 2, 15 | wsbc 3804 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
17 | cvtx 29031 | . . . . 5 class Vtx | |
18 | 13, 17 | cfv 6573 | . . . 4 class (Vtx‘𝑔) |
19 | 16, 5, 18 | wsbc 3804 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
20 | 19, 12 | cab 2717 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
21 | 1, 20 | wceq 1537 | 1 wff USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
Colors of variables: wff setvar class |
This definition is referenced by: isushgr 29096 |
Copyright terms: Public domain | W3C validator |