Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ushgr | Structured version Visualization version GIF version |
Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.) |
Ref | Expression |
---|---|
df-ushgr | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cushgr 27148 | . 2 class USHGraph | |
2 | ve | . . . . . . . 8 setvar 𝑒 | |
3 | 2 | cv 1542 | . . . . . . 7 class 𝑒 |
4 | 3 | cdm 5551 | . . . . . 6 class dom 𝑒 |
5 | vv | . . . . . . . . 9 setvar 𝑣 | |
6 | 5 | cv 1542 | . . . . . . . 8 class 𝑣 |
7 | 6 | cpw 4513 | . . . . . . 7 class 𝒫 𝑣 |
8 | c0 4237 | . . . . . . . 8 class ∅ | |
9 | 8 | csn 4541 | . . . . . . 7 class {∅} |
10 | 7, 9 | cdif 3863 | . . . . . 6 class (𝒫 𝑣 ∖ {∅}) |
11 | 4, 10, 3 | wf1 6377 | . . . . 5 wff 𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
12 | vg | . . . . . . 7 setvar 𝑔 | |
13 | 12 | cv 1542 | . . . . . 6 class 𝑔 |
14 | ciedg 27088 | . . . . . 6 class iEdg | |
15 | 13, 14 | cfv 6380 | . . . . 5 class (iEdg‘𝑔) |
16 | 11, 2, 15 | wsbc 3694 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
17 | cvtx 27087 | . . . . 5 class Vtx | |
18 | 13, 17 | cfv 6380 | . . . 4 class (Vtx‘𝑔) |
19 | 16, 5, 18 | wsbc 3694 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
20 | 19, 12 | cab 2714 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
21 | 1, 20 | wceq 1543 | 1 wff USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
Colors of variables: wff setvar class |
This definition is referenced by: isushgr 27152 |
Copyright terms: Public domain | W3C validator |