Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ushgr | Structured version Visualization version GIF version |
Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function 𝑒 is an injective (one-to-one) function into subsets of the set of vertices 𝑣, representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of [Bollobas] p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of [Diestel] p. 27, where "E is a subset of [...] the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020.) (Revised by AV, 8-Oct-2020.) |
Ref | Expression |
---|---|
df-ushgr | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cushgr 27330 | . 2 class USHGraph | |
2 | ve | . . . . . . . 8 setvar 𝑒 | |
3 | 2 | cv 1538 | . . . . . . 7 class 𝑒 |
4 | 3 | cdm 5580 | . . . . . 6 class dom 𝑒 |
5 | vv | . . . . . . . . 9 setvar 𝑣 | |
6 | 5 | cv 1538 | . . . . . . . 8 class 𝑣 |
7 | 6 | cpw 4530 | . . . . . . 7 class 𝒫 𝑣 |
8 | c0 4253 | . . . . . . . 8 class ∅ | |
9 | 8 | csn 4558 | . . . . . . 7 class {∅} |
10 | 7, 9 | cdif 3880 | . . . . . 6 class (𝒫 𝑣 ∖ {∅}) |
11 | 4, 10, 3 | wf1 6415 | . . . . 5 wff 𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
12 | vg | . . . . . . 7 setvar 𝑔 | |
13 | 12 | cv 1538 | . . . . . 6 class 𝑔 |
14 | ciedg 27270 | . . . . . 6 class iEdg | |
15 | 13, 14 | cfv 6418 | . . . . 5 class (iEdg‘𝑔) |
16 | 11, 2, 15 | wsbc 3711 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
17 | cvtx 27269 | . . . . 5 class Vtx | |
18 | 13, 17 | cfv 6418 | . . . 4 class (Vtx‘𝑔) |
19 | 16, 5, 18 | wsbc 3711 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) |
20 | 19, 12 | cab 2715 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
21 | 1, 20 | wceq 1539 | 1 wff USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
Colors of variables: wff setvar class |
This definition is referenced by: isushgr 27334 |
Copyright terms: Public domain | W3C validator |