| Metamath
Proof Explorer Theorem List (p. 289 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cgracom 28801 | Angle congruence commutes. Theorem 11.7 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉) | ||
| Theorem | cgratr 28802 | Angle congruence is transitive. Theorem 11.8 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝐽 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉) | ||
| Theorem | flatcgra 28803 | Flat angles are congruent. (Contributed by Thierry Arnoux, 13-Feb-2023.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ≠ 𝐵) & ⊢ (𝜑 → 𝐷 ≠ 𝐸) & ⊢ (𝜑 → 𝐹 ≠ 𝐸) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | ||
| Theorem | cgraswaplr 28804 | Swap both side of angle congruence. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐶𝐵𝐴”〉(cgrA‘𝐺)〈“𝐹𝐸𝐷”〉) | ||
| Theorem | cgrabtwn 28805 | Angle congruence preserves flat angles. Part of Theorem 11.21 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) | ||
| Theorem | cgrahl 28806 | Angle congruence preserves null angles. Part of Theorem 11.21 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴(𝐾‘𝐵)𝐶) ⇒ ⊢ (𝜑 → 𝐷(𝐾‘𝐸)𝐹) | ||
| Theorem | cgracol 28807 | Angle congruence preserves colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) | ||
| Theorem | cgrancol 28808 | Angle congruence preserves non-colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) | ||
| Theorem | dfcgra2 28809* | This is the full statement of definition 11.2 of [Schwabhauser] p. 95. This proof serves to confirm that the definition we have chosen, df-cgra 28787 is indeed equivalent to the textbook's definition. (Contributed by Thierry Arnoux, 2-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵) ∧ (𝐷 ≠ 𝐸 ∧ 𝐹 ≠ 𝐸) ∧ ∃𝑎 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑓 ∈ 𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 − 𝑎) = (𝐸 − 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 − 𝑐) = (𝐸 − 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 − 𝑑) = (𝐵 − 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 − 𝑓) = (𝐵 − 𝐶))) ∧ (𝑎 − 𝑐) = (𝑑 − 𝑓))))) | ||
| Theorem | sacgr 28810 | Supplementary angles of congruent angles are themselves congruent. Theorem 11.13 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 30-Sep-2020.) (Proof shortened by Igor Ieskov, 16-Feb-2023.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝑋)) & ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝑌)) & ⊢ (𝜑 → 𝐵 ≠ 𝑋) & ⊢ (𝜑 → 𝐸 ≠ 𝑌) ⇒ ⊢ (𝜑 → 〈“𝑋𝐵𝐶”〉(cgrA‘𝐺)〈“𝑌𝐸𝐹”〉) | ||
| Theorem | oacgr 28811 | Vertical angle theorem. Vertical, or opposite angles are the facing pair of angles formed when two lines intersect. Eudemus of Rhodes attributed the proof to Thales of Miletus. The proposition showed that since both of a pair of vertical angles are supplementary to both of the adjacent angles, the vertical angles are equal in measure. We follow the same path. Theorem 11.14 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 27-Sep-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐹)) & ⊢ (𝜑 → 𝐵 ≠ 𝐴) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ 𝐷) & ⊢ (𝜑 → 𝐵 ≠ 𝐹) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐵𝐹”〉) | ||
| Theorem | acopy 28812* | Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) | ||
| Theorem | acopyeu 28813 | Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. Akin to a uniqueness theorem, this states that if two points 𝑋 and 𝑌 both fulfill the conditions, then they are on the same half-line. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑌”〉) & ⊢ (𝜑 → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) & ⊢ (𝜑 → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ⇒ ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝑌) | ||
| Syntax | cinag 28814 | Extend class relation with the geometrical "point in angle" relation. |
| class inA | ||
| Syntax | cleag 28815 | Extend class relation with the "angle less than" relation. |
| class ≤∠ | ||
| Definition | df-inag 28816* | Definition of the geometrical "in angle" relation. (Contributed by Thierry Arnoux, 15-Aug-2020.) |
| ⊢ inA = (𝑔 ∈ V ↦ {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))}) | ||
| Theorem | isinag 28817* | Property for point 𝑋 to lie in the angle 〈“𝐴𝐵𝐶”〉. Definition 11.23 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉 ↔ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) | ||
| Theorem | isinagd 28818 | Sufficient conditions for in-angle relation, deduction version. (Contributed by Thierry Arnoux, 20-Oct-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ≠ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → (𝑌 = 𝐵 ∨ 𝑌(𝐾‘𝐵)𝑋)) ⇒ ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) | ||
| Theorem | inagflat 28819 | Any point lies in a flat angle. (Contributed by Thierry Arnoux, 13-Feb-2023.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ≠ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) | ||
| Theorem | inagswap 28820 | Swap the order of the half lines delimiting the angle. Theorem 11.24 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) ⇒ ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐶𝐵𝐴”〉) | ||
| Theorem | inagne1 28821 | Deduce inequality from the in-angle relation. (Contributed by Thierry Arnoux, 29-Oct-2021.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
| Theorem | inagne2 28822 | Deduce inequality from the in-angle relation. (Contributed by Thierry Arnoux, 29-Oct-2021.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐵) | ||
| Theorem | inagne3 28823 | Deduce inequality from the in-angle relation. (Contributed by Thierry Arnoux, 29-Oct-2021.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) ⇒ ⊢ (𝜑 → 𝑋 ≠ 𝐵) | ||
| Theorem | inaghl 28824 | The "point lie in angle" relation is independent of the points chosen on the half lines starting from 𝐵. Theorem 11.25 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 27-Sep-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝐷(𝐾‘𝐵)𝐴) & ⊢ (𝜑 → 𝐹(𝐾‘𝐵)𝐶) & ⊢ (𝜑 → 𝑌(𝐾‘𝐵)𝑋) ⇒ ⊢ (𝜑 → 𝑌(inA‘𝐺)〈“𝐷𝐵𝐹”〉) | ||
| Definition | df-leag 28825* | Definition of the geometrical "angle less than" relation. Definition 11.27 of [Schwabhauser] p. 102. (Contributed by Thierry Arnoux, 7-Oct-2020.) |
| ⊢ ≤∠ = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧ 〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝑔)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))}) | ||
| Theorem | isleag 28826* | Geometrical "less than" property for angles. Definition 11.27 of [Schwabhauser] p. 102. (Contributed by Thierry Arnoux, 7-Oct-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 (𝑥(inA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑥”〉))) | ||
| Theorem | isleagd 28827 | Sufficient condition for "less than" angle relation, deduction version (Contributed by Thierry Arnoux, 12-Oct-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ ≤ = (≤∠‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ≤ 〈“𝐷𝐸𝐹”〉) | ||
| Theorem | leagne1 28828 | Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
| Theorem | leagne2 28829 | Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐵) | ||
| Theorem | leagne3 28830 | Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 𝐷 ≠ 𝐸) | ||
| Theorem | leagne4 28831 | Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(≤∠‘𝐺)〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 𝐹 ≠ 𝐸) | ||
| Theorem | cgrg3col4 28832* | Lemma 11.28 of [Schwabhauser] p. 102. Extend a congruence of three points with a fourth colinear point. (Contributed by Thierry Arnoux, 8-Oct-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) | ||
| Theorem | tgsas1 28833 | First congruence theorem: SAS (Side-Angle-Side): If two pairs of sides of two triangles are equal in length, and the included angles are equal in measurement, then third sides are equal in length. Theorem 11.49 of [Schwabhauser] p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) ⇒ ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) | ||
| Theorem | tgsas 28834 | First congruence theorem: SAS (Side-Angle-Side): If two pairs of sides of two triangles are equal in length, and the included angles are equal in measurement, then the triangles are congruent. Theorem 11.49 of [Schwabhauser] p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) | ||
| Theorem | tgsas2 28835 | First congruence theorem: SAS. Theorem 11.49 of [Schwabhauser] p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉) | ||
| Theorem | tgsas3 28836 | First congruence theorem: SAS. Theorem 11.49 of [Schwabhauser] p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉) | ||
| Theorem | tgasa1 28837 | Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of [Schwabhauser] p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉) ⇒ ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) | ||
| Theorem | tgasa 28838 | Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of [Schwabhauser] p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) & ⊢ (𝜑 → 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) | ||
| Theorem | tgsss1 28839 | Third congruence theorem: SSS (Side-Side-Side): If the three pairs of sides of two triangles are equal in length, then the triangles are congruent. Theorem 11.51 of [Schwabhauser] p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) & ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐶 ≠ 𝐴) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | ||
| Theorem | tgsss2 28840 | Third congruence theorem: SSS. Theorem 11.51 of [Schwabhauser] p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) & ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐶 ≠ 𝐴) ⇒ ⊢ (𝜑 → 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉) | ||
| Theorem | tgsss3 28841 | Third congruence theorem: SSS. Theorem 11.51 of [Schwabhauser] p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) & ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐶 ≠ 𝐴) ⇒ ⊢ (𝜑 → 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉) | ||
| Theorem | dfcgrg2 28842 | Congruence for two triangles can also be defined as congruence of sides and angles (6 parts). This is often the actual textbook definition of triangle congruence, see for example https://en.wikipedia.org/wiki/Congruence_(geometry)#Congruence_of_triangles. With this definition, the "SSS" congruence theorem has an additional part, namely, that triangle congruence implies congruence of the sides (which means equality of the lengths). Because our development of elementary geometry strives to closely follow Schwabhaeuser's, our original definition of shape congruence, df-cgrg 28490, already covers that part: see trgcgr 28495. This theorem is also named "CPCTC", which stands for "Corresponding Parts of Congruent Triangles are Congruent", see https://en.wikipedia.org/wiki/Congruence_(geometry)#CPCTC 28495. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐶 ≠ 𝐴) ⇒ ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) ∧ (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ 〈“𝐶𝐴𝐵”〉(cgrA‘𝐺)〈“𝐹𝐷𝐸”〉 ∧ 〈“𝐵𝐶𝐴”〉(cgrA‘𝐺)〈“𝐸𝐹𝐷”〉)))) | ||
| Theorem | isoas 28843 | Congruence theorem for isocele triangles: if two angles of a triangle are congruent, then the corresponding sides also are. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐴𝐶𝐵”〉) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − 𝐶)) | ||
| Syntax | ceqlg 28844 | Declare the class of equilateral triangles. |
| class eqltrG | ||
| Definition | df-eqlg 28845* | Define the class of equilateral triangles. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
| ⊢ eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)〈“(𝑥‘1)(𝑥‘2)(𝑥‘0)”〉}) | ||
| Theorem | iseqlg 28846 | Property of a triangle being equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺) ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐵𝐶𝐴”〉)) | ||
| Theorem | iseqlgd 28847 | Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐶 − 𝐴)) & ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐴 − 𝐵)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺)) | ||
| Theorem | f1otrgds 28848* | Convenient lemma for f1otrg 28850. (Contributed by Thierry Arnoux, 19-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝐸 = (dist‘𝐻) & ⊢ 𝐽 = (Itv‘𝐻) & ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝑃) & ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵)) → (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) & ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = ((𝐹‘𝑋)𝐷(𝐹‘𝑌))) | ||
| Theorem | f1otrgitv 28849* | Convenient lemma for f1otrg 28850. (Contributed by Thierry Arnoux, 19-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝐸 = (dist‘𝐻) & ⊢ 𝐽 = (Itv‘𝐻) & ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝑃) & ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵)) → (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) & ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐽𝑌) ↔ (𝐹‘𝑍) ∈ ((𝐹‘𝑋)𝐼(𝐹‘𝑌)))) | ||
| Theorem | f1otrg 28850* | A bijection between bases which conserves distances and intervals conserves also geometries. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝐸 = (dist‘𝐻) & ⊢ 𝐽 = (Itv‘𝐻) & ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝑃) & ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵)) → (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) & ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓)))) & ⊢ (𝜑 → 𝐻 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → (LineG‘𝐻) = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐽𝑦) ∨ 𝑥 ∈ (𝑧𝐽𝑦) ∨ 𝑦 ∈ (𝑥𝐽𝑧))})) ⇒ ⊢ (𝜑 → 𝐻 ∈ TarskiG) | ||
| Theorem | f1otrge 28851* | A bijection between bases which conserves distances and intervals conserves also the property of being a Euclidean geometry. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝐸 = (dist‘𝐻) & ⊢ 𝐽 = (Itv‘𝐻) & ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝑃) & ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵)) → (𝑒𝐸𝑓) = ((𝐹‘𝑒)𝐷(𝐹‘𝑓))) & ⊢ ((𝜑 ∧ (𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑔 ∈ (𝑒𝐽𝑓) ↔ (𝐹‘𝑔) ∈ ((𝐹‘𝑒)𝐼(𝐹‘𝑓)))) & ⊢ (𝜑 → 𝐻 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ TarskiGE) ⇒ ⊢ (𝜑 → 𝐻 ∈ TarskiGE) | ||
| Syntax | cttg 28852 | Function to convert an algebraic structure to a Tarski geometry. |
| class toTG | ||
| Definition | df-ttg 28853* | Define a function converting a subcomplex Hilbert space to a Tarski Geometry. It does so by equipping the structure with a betweenness operation. Note that because the scalar product is applied over the interval (0[,]1), only spaces whose scalar field is a superset of that interval can be considered. (Contributed by Thierry Arnoux, 24-Mar-2019.) |
| ⊢ toTG = (𝑤 ∈ V ↦ ⦋(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠 ‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) | ||
| Theorem | ttgval 28854* | Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof shortened by AV, 9-Nov-2024.) |
| ⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ − = (-g‘𝐻) & ⊢ · = ( ·𝑠 ‘𝐻) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐻 ∈ 𝑉 → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) ∧ 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}))) | ||
| Theorem | ttglem 28855 | Lemma for ttgbas 28856, ttgvsca 28859 etc. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (LineG‘ndx) & ⊢ (𝐸‘ndx) ≠ (Itv‘ndx) ⇒ ⊢ (𝐸‘𝐻) = (𝐸‘𝐺) | ||
| Theorem | ttgbas 28856 | The base set of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ 𝐵 = (Base‘𝐺) | ||
| Theorem | ttgplusg 28857 | The addition operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ 𝐺 = (toTG‘𝐻) & ⊢ + = (+g‘𝐻) ⇒ ⊢ + = (+g‘𝐺) | ||
| Theorem | ttgsub 28858 | The subtraction operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
| ⊢ 𝐺 = (toTG‘𝐻) & ⊢ − = (-g‘𝐻) ⇒ ⊢ − = (-g‘𝐺) | ||
| Theorem | ttgvsca 28859 | The scalar product of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ 𝐺 = (toTG‘𝐻) & ⊢ · = ( ·𝑠 ‘𝐻) ⇒ ⊢ · = ( ·𝑠 ‘𝐺) | ||
| Theorem | ttgds 28860 | The metric of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐷 = (dist‘𝐻) ⇒ ⊢ 𝐷 = (dist‘𝐺) | ||
| Theorem | ttgitvval 28861* | Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
| ⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑃 = (Base‘𝐻) & ⊢ − = (-g‘𝐻) & ⊢ · = ( ·𝑠 ‘𝐻) ⇒ ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) | ||
| Theorem | ttgelitv 28862* | Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
| ⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑃 = (Base‘𝐻) & ⊢ − = (-g‘𝐻) & ⊢ · = ( ·𝑠 ‘𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝐻 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) | ||
| Theorem | ttgbtwnid 28863 | Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.) |
| ⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑃 = (Base‘𝐻) & ⊢ − = (-g‘𝐻) & ⊢ · = ( ·𝑠 ‘𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ 𝑅 = (Base‘(Scalar‘𝐻)) & ⊢ (𝜑 → (0[,]1) ⊆ 𝑅) & ⊢ (𝜑 → 𝐻 ∈ ℂMod) & ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | ttgcontlem1 28864 | Lemma for % ttgcont . (Contributed by Thierry Arnoux, 24-May-2019.) |
| ⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑃 = (Base‘𝐻) & ⊢ − = (-g‘𝐻) & ⊢ · = ( ·𝑠 ‘𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ 𝑅 = (Base‘(Scalar‘𝐻)) & ⊢ (𝜑 → (0[,]1) ⊆ 𝑅) & ⊢ + = (+g‘𝐻) & ⊢ (𝜑 → 𝐻 ∈ ℂVec) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝑁 ∈ 𝑃) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐾 ≠ 0) & ⊢ (𝜑 → 𝐾 ≠ 1) & ⊢ (𝜑 → 𝐿 ≠ 𝑀) & ⊢ (𝜑 → 𝐿 ≤ (𝑀 / 𝐾)) & ⊢ (𝜑 → 𝐿 ∈ (0[,]1)) & ⊢ (𝜑 → 𝐾 ∈ (0[,]1)) & ⊢ (𝜑 → 𝑀 ∈ (0[,]𝐿)) & ⊢ (𝜑 → (𝑋 − 𝐴) = (𝐾 · (𝑌 − 𝐴))) & ⊢ (𝜑 → (𝑋 − 𝐴) = (𝑀 · (𝑁 − 𝐴))) & ⊢ (𝜑 → 𝐵 = (𝐴 + (𝐿 · (𝑁 − 𝐴)))) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝑋𝐼𝑌)) | ||
| Theorem | xmstrkgc 28865 | Any metric space fulfills Tarski's geometry axioms of congruence. (Contributed by Thierry Arnoux, 13-Mar-2019.) |
| ⊢ (𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC) | ||
| Theorem | cchhllem 28866* | Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) & ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) & ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) ⇒ ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) | ||
| Syntax | cee 28867 | Declare the syntax for the Euclidean space generator. |
| class 𝔼 | ||
| Syntax | cbtwn 28868 | Declare the syntax for the Euclidean betweenness predicate. |
| class Btwn | ||
| Syntax | ccgr 28869 | Declare the syntax for the Euclidean congruence predicate. |
| class Cgr | ||
| Definition | df-ee 28870 | Define the Euclidean space generator. For details, see elee 28873. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛))) | ||
| Definition | df-btwn 28871* | Define the Euclidean betweenness predicate. For details, see brbtwn 28879. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ Btwn = ◡{〈〈𝑥, 𝑧〉, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖))))} | ||
| Definition | df-cgr 28872* | Define the Euclidean congruence predicate. For details, see brcgr 28880. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ Cgr = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} | ||
| Theorem | elee 28873 | Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) | ||
| Theorem | mptelee 28874* | A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.) (Proof shortened by SN, 2-Feb-2026.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)) | ||
| Theorem | mpteleeOLD 28875* | Obsolete version of mptelee 28874 as of 2-Feb-2026. (Contributed by Scott Fenton, 7-Jun-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)) | ||
| Theorem | eleenn 28876 | If 𝐴 is in (𝔼‘𝑁), then 𝑁 is a natural. (Contributed by Scott Fenton, 1-Jul-2013.) |
| ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) | ||
| Theorem | eleei 28877 | The forward direction of elee 28873. (Contributed by Scott Fenton, 1-Jul-2013.) |
| ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ) | ||
| Theorem | eedimeq 28878 | A point belongs to at most one Euclidean space. (Contributed by Scott Fenton, 1-Jul-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑀)) → 𝑁 = 𝑀) | ||
| Theorem | brbtwn 28879* | The binary relation form of the betweenness predicate. The statement 𝐴 Btwn 〈𝐵, 𝐶〉 should be informally read as "𝐴 lies on a line segment between 𝐵 and 𝐶. This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐶〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) | ||
| Theorem | brcgr 28880* | The binary relation form of the congruence predicate. The statement 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 should be read informally as "the 𝑁 dimensional point 𝐴 is as far from 𝐵 as 𝐶 is from 𝐷, or "the line segment 𝐴𝐵 is congruent to the line segment 𝐶𝐷. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) | ||
| Theorem | fveere 28881 | The function value of a point is a real. (Contributed by Scott Fenton, 10-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℝ) | ||
| Theorem | fveecn 28882 | The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) | ||
| Theorem | eqeefv 28883* | Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | ||
| Theorem | eqeelen 28884* | Two points are equal iff the square of the distance between them is zero. (Contributed by Scott Fenton, 10-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0)) | ||
| Theorem | brbtwn2 28885* | Alternate characterization of betweenness, with no existential quantifiers. (Contributed by Scott Fenton, 24-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐶〉 ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑖) − (𝐴‘𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑗) − (𝐴‘𝑗))) = (((𝐵‘𝑗) − (𝐴‘𝑗)) · ((𝐶‘𝑖) − (𝐴‘𝑖)))))) | ||
| Theorem | colinearalglem1 28886 | Lemma for colinearalg 28890. Expand out a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵 − 𝐴) · (𝐹 − 𝐷)) = ((𝐸 − 𝐷) · (𝐶 − 𝐴)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))))) | ||
| Theorem | colinearalglem2 28887* | Lemma for colinearalg 28890. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑗) − (𝐴‘𝑗))) = (((𝐵‘𝑗) − (𝐴‘𝑗)) · ((𝐶‘𝑖) − (𝐴‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐵‘𝑖)) · ((𝐴‘𝑗) − (𝐵‘𝑗))) = (((𝐶‘𝑗) − (𝐵‘𝑗)) · ((𝐴‘𝑖) − (𝐵‘𝑖))))) | ||
| Theorem | colinearalglem3 28888* | Lemma for colinearalg 28890. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑗) − (𝐴‘𝑗))) = (((𝐵‘𝑗) − (𝐴‘𝑗)) · ((𝐶‘𝑖) − (𝐴‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐶‘𝑖)) · ((𝐵‘𝑗) − (𝐶‘𝑗))) = (((𝐴‘𝑗) − (𝐶‘𝑗)) · ((𝐵‘𝑖) − (𝐶‘𝑖))))) | ||
| Theorem | colinearalglem4 28889* | Lemma for colinearalg 28890. Prove a disjunction that will be needed in the final proof. (Contributed by Scott Fenton, 27-Jun-2013.) |
| ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶‘𝑖) − (𝐴‘𝑖))) + (𝐴‘𝑖)) − (𝐴‘𝑖)) · ((𝐶‘𝑖) − (𝐴‘𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − ((𝐾 · ((𝐶‘𝑖) − (𝐴‘𝑖))) + (𝐴‘𝑖))) · ((𝐴‘𝑖) − ((𝐾 · ((𝐶‘𝑖) − (𝐴‘𝑖))) + (𝐴‘𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐶‘𝑖)) · (((𝐾 · ((𝐶‘𝑖) − (𝐴‘𝑖))) + (𝐴‘𝑖)) − (𝐶‘𝑖))) ≤ 0)) | ||
| Theorem | colinearalg 28890* | An algebraic characterization of colinearity. Note the similarity to brbtwn2 28885. (Contributed by Scott Fenton, 24-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑗) − (𝐴‘𝑗))) = (((𝐵‘𝑗) − (𝐴‘𝑗)) · ((𝐶‘𝑖) − (𝐴‘𝑖))))) | ||
| Theorem | eleesub 28891* | Membership of a subtraction mapping in a Euclidean space. (Contributed by Scott Fenton, 17-Jul-2013.) |
| ⊢ 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ⇒ ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) | ||
| Theorem | eleesubd 28892* | Membership of a subtraction mapping in a Euclidean space. Deduction form of eleesub 28891. (Contributed by Scott Fenton, 17-Jul-2013.) |
| ⊢ (𝜑 → 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖)))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) | ||
| Theorem | axdimuniq 28893 | The unique dimension axiom. If a point is in 𝑁 dimensional space and in 𝑀 dimensional space, then 𝑁 = 𝑀. This axiom is not traditionally presented with Tarski's axioms, but we require it here as we are considering spaces in arbitrary dimensions. (Contributed by Scott Fenton, 24-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑀 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑀))) → 𝑁 = 𝑀) | ||
| Theorem | axcgrrflx 28894 | 𝐴 is as far from 𝐵 as 𝐵 is from 𝐴. Axiom A1 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉) | ||
| Theorem | axcgrtr 28895 | Congruence is transitive. Axiom A2 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉)) | ||
| Theorem | axcgrid 28896 | If there is no distance between 𝐴 and 𝐵, then 𝐴 = 𝐵. Axiom A3 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐶〉 → 𝐴 = 𝐵)) | ||
| Theorem | axsegconlem1 28897* | Lemma for axsegcon 28907. Handle the degenerate case. (Contributed by Scott Fenton, 7-Jun-2013.) |
| ⊢ ((𝐴 = 𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑡) · (𝐴‘𝑖)) + (𝑡 · (𝑥‘𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝑥‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) | ||
| Theorem | axsegconlem2 28898* | Lemma for axsegcon 28907. Show that the square of the distance between two points is a real number. (Contributed by Scott Fenton, 17-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) ⇒ ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑆 ∈ ℝ) | ||
| Theorem | axsegconlem3 28899* | Lemma for axsegcon 28907. Show that the square of the distance between two points is nonnegative. (Contributed by Scott Fenton, 17-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) ⇒ ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑆) | ||
| Theorem | axsegconlem4 28900* | Lemma for axsegcon 28907. Show that the distance between two points is a real number. (Contributed by Scott Fenton, 17-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) ⇒ ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |