| Step | Hyp | Ref
| Expression |
| 1 | | df-uhgr 29037 |
. . 3
⊢ UHGraph =
{𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} |
| 2 | 1 | eleq2i 2826 |
. 2
⊢ (𝐺 ∈ UHGraph ↔ 𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})}) |
| 3 | | fveq2 6876 |
. . . . 5
⊢ (ℎ = 𝐺 → (iEdg‘ℎ) = (iEdg‘𝐺)) |
| 4 | | isuhgr.e |
. . . . 5
⊢ 𝐸 = (iEdg‘𝐺) |
| 5 | 3, 4 | eqtr4di 2788 |
. . . 4
⊢ (ℎ = 𝐺 → (iEdg‘ℎ) = 𝐸) |
| 6 | 3 | dmeqd 5885 |
. . . . 5
⊢ (ℎ = 𝐺 → dom (iEdg‘ℎ) = dom (iEdg‘𝐺)) |
| 7 | 4 | eqcomi 2744 |
. . . . . 6
⊢
(iEdg‘𝐺) =
𝐸 |
| 8 | 7 | dmeqi 5884 |
. . . . 5
⊢ dom
(iEdg‘𝐺) = dom 𝐸 |
| 9 | 6, 8 | eqtrdi 2786 |
. . . 4
⊢ (ℎ = 𝐺 → dom (iEdg‘ℎ) = dom 𝐸) |
| 10 | | fveq2 6876 |
. . . . . . 7
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = (Vtx‘𝐺)) |
| 11 | | isuhgr.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
| 12 | 10, 11 | eqtr4di 2788 |
. . . . . 6
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = 𝑉) |
| 13 | 12 | pweqd 4592 |
. . . . 5
⊢ (ℎ = 𝐺 → 𝒫 (Vtx‘ℎ) = 𝒫 𝑉) |
| 14 | 13 | difeq1d 4100 |
. . . 4
⊢ (ℎ = 𝐺 → (𝒫 (Vtx‘ℎ) ∖ {∅}) = (𝒫
𝑉 ∖
{∅})) |
| 15 | 5, 9, 14 | feq123d 6695 |
. . 3
⊢ (ℎ = 𝐺 → ((iEdg‘ℎ):dom (iEdg‘ℎ)⟶(𝒫 (Vtx‘ℎ) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
| 16 | | fvexd 6891 |
. . . . 5
⊢ (𝑔 = ℎ → (Vtx‘𝑔) ∈ V) |
| 17 | | fveq2 6876 |
. . . . 5
⊢ (𝑔 = ℎ → (Vtx‘𝑔) = (Vtx‘ℎ)) |
| 18 | | fvexd 6891 |
. . . . . 6
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → (iEdg‘𝑔) ∈ V) |
| 19 | | fveq2 6876 |
. . . . . . 7
⊢ (𝑔 = ℎ → (iEdg‘𝑔) = (iEdg‘ℎ)) |
| 20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → (iEdg‘𝑔) = (iEdg‘ℎ)) |
| 21 | | simpr 484 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → 𝑒 = (iEdg‘ℎ)) |
| 22 | 21 | dmeqd 5885 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → dom 𝑒 = dom (iEdg‘ℎ)) |
| 23 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → 𝑣 = (Vtx‘ℎ)) |
| 24 | 23 | pweqd 4592 |
. . . . . . . . 9
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → 𝒫 𝑣 = 𝒫 (Vtx‘ℎ)) |
| 25 | 24 | difeq1d 4100 |
. . . . . . . 8
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → (𝒫 𝑣 ∖ {∅}) = (𝒫
(Vtx‘ℎ) ∖
{∅})) |
| 26 | 25 | adantr 480 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → (𝒫 𝑣 ∖ {∅}) = (𝒫
(Vtx‘ℎ) ∖
{∅})) |
| 27 | 21, 22, 26 | feq123d 6695 |
. . . . . 6
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → (𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘ℎ):dom (iEdg‘ℎ)⟶(𝒫
(Vtx‘ℎ) ∖
{∅}))) |
| 28 | 18, 20, 27 | sbcied2 3810 |
. . . . 5
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘ℎ):dom (iEdg‘ℎ)⟶(𝒫
(Vtx‘ℎ) ∖
{∅}))) |
| 29 | 16, 17, 28 | sbcied2 3810 |
. . . 4
⊢ (𝑔 = ℎ → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘ℎ):dom (iEdg‘ℎ)⟶(𝒫
(Vtx‘ℎ) ∖
{∅}))) |
| 30 | 29 | cbvabv 2805 |
. . 3
⊢ {𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} = {ℎ ∣ (iEdg‘ℎ):dom (iEdg‘ℎ)⟶(𝒫 (Vtx‘ℎ) ∖
{∅})} |
| 31 | 15, 30 | elab2g 3659 |
. 2
⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
| 32 | 2, 31 | bitrid 283 |
1
⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |