MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuhgr Structured version   Visualization version   GIF version

Theorem isuhgr 28587
Description: The predicate "is an undirected hypergraph." (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
isuhgr.v 𝑉 = (Vtx‘𝐺)
isuhgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isuhgr (𝐺𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))

Proof of Theorem isuhgr
Dummy variables 𝑔 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uhgr 28585 . . 3 UHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})}
21eleq2i 2823 . 2 (𝐺 ∈ UHGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})})
3 fveq2 6890 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isuhgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4eqtr4di 2788 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 5904 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2739 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 5903 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8eqtrdi 2786 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 6890 . . . . . . 7 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isuhgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1210, 11eqtr4di 2788 . . . . . 6 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 4618 . . . . 5 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413difeq1d 4120 . . . 4 ( = 𝐺 → (𝒫 (Vtx‘) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
155, 9, 14feq123d 6705 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)⟶(𝒫 (Vtx‘) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
16 fvexd 6905 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
17 fveq2 6890 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
18 fvexd 6905 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
19 fveq2 6890 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2019adantr 479 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
21 simpr 483 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2221dmeqd 5904 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
23 simpr 483 . . . . . . . . . 10 ((𝑔 = 𝑣 = (Vtx‘)) → 𝑣 = (Vtx‘))
2423pweqd 4618 . . . . . . . . 9 ((𝑔 = 𝑣 = (Vtx‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2524difeq1d 4120 . . . . . . . 8 ((𝑔 = 𝑣 = (Vtx‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2625adantr 479 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2721, 22, 26feq123d 6705 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)⟶(𝒫 (Vtx‘) ∖ {∅})))
2818, 20, 27sbcied2 3823 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)⟶(𝒫 (Vtx‘) ∖ {∅})))
2916, 17, 28sbcied2 3823 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)⟶(𝒫 (Vtx‘) ∖ {∅})))
3029cbvabv 2803 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} = { ∣ (iEdg‘):dom (iEdg‘)⟶(𝒫 (Vtx‘) ∖ {∅})}
3115, 30elab2g 3669 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
322, 31bitrid 282 1 (𝐺𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  {cab 2707  Vcvv 3472  [wsbc 3776  cdif 3944  c0 4321  𝒫 cpw 4601  {csn 4627  dom cdm 5675  wf 6538  cfv 6542  Vtxcvtx 28523  iEdgciedg 28524  UHGraphcuhgr 28583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-uhgr 28585
This theorem is referenced by:  uhgrf  28589  uhgreq12g  28592  ushgruhgr  28596  isuhgrop  28597  uhgr0e  28598  uhgr0  28600  uhgrun  28601  uhgrstrrepe  28605  incistruhgr  28606  upgruhgr  28629  subuhgr  28810
  Copyright terms: Public domain W3C validator