MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuhgr Structured version   Visualization version   GIF version

Theorem isuhgr 29092
Description: The predicate "is an undirected hypergraph." (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
isuhgr.v 𝑉 = (Vtx‘𝐺)
isuhgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isuhgr (𝐺𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))

Proof of Theorem isuhgr
Dummy variables 𝑔 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uhgr 29090 . . 3 UHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})}
21eleq2i 2831 . 2 (𝐺 ∈ UHGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})})
3 fveq2 6907 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isuhgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4eqtr4di 2793 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 5919 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2744 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 5918 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8eqtrdi 2791 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 6907 . . . . . . 7 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isuhgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1210, 11eqtr4di 2793 . . . . . 6 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 4622 . . . . 5 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413difeq1d 4135 . . . 4 ( = 𝐺 → (𝒫 (Vtx‘) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
155, 9, 14feq123d 6726 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)⟶(𝒫 (Vtx‘) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
16 fvexd 6922 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
17 fveq2 6907 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
18 fvexd 6922 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
19 fveq2 6907 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2019adantr 480 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
21 simpr 484 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2221dmeqd 5919 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
23 simpr 484 . . . . . . . . . 10 ((𝑔 = 𝑣 = (Vtx‘)) → 𝑣 = (Vtx‘))
2423pweqd 4622 . . . . . . . . 9 ((𝑔 = 𝑣 = (Vtx‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2524difeq1d 4135 . . . . . . . 8 ((𝑔 = 𝑣 = (Vtx‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2625adantr 480 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2721, 22, 26feq123d 6726 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)⟶(𝒫 (Vtx‘) ∖ {∅})))
2818, 20, 27sbcied2 3839 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)⟶(𝒫 (Vtx‘) ∖ {∅})))
2916, 17, 28sbcied2 3839 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)⟶(𝒫 (Vtx‘) ∖ {∅})))
3029cbvabv 2810 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} = { ∣ (iEdg‘):dom (iEdg‘)⟶(𝒫 (Vtx‘) ∖ {∅})}
3115, 30elab2g 3683 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
322, 31bitrid 283 1 (𝐺𝑈 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  Vcvv 3478  [wsbc 3791  cdif 3960  c0 4339  𝒫 cpw 4605  {csn 4631  dom cdm 5689  wf 6559  cfv 6563  Vtxcvtx 29028  iEdgciedg 29029  UHGraphcuhgr 29088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-uhgr 29090
This theorem is referenced by:  uhgrf  29094  uhgreq12g  29097  ushgruhgr  29101  isuhgrop  29102  uhgr0e  29103  uhgr0  29105  uhgrun  29106  uhgrstrrepe  29110  incistruhgr  29111  upgruhgr  29134  subuhgr  29318  isubgruhgr  47792  grimuhgr  47816
  Copyright terms: Public domain W3C validator