MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uncf Structured version   Visualization version   GIF version

Definition df-uncf 18121
Description: Define the uncurry functor, which can be defined equationally using evalF. Strictly speaking, the third category argument is not needed, since the resulting functor is extensionally equal regardless, but it is used in the equational definition and is too much work to remove. (Contributed by Mario Carneiro, 13-Jan-2017.)
Assertion
Ref Expression
df-uncf uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
Distinct variable group:   𝑓,𝑐

Detailed syntax breakdown of Definition df-uncf
StepHypRef Expression
1 cuncf 18117 . 2 class uncurryF
2 vc . . 3 setvar 𝑐
3 vf . . 3 setvar 𝑓
4 cvv 3436 . . 3 class V
5 c1 11007 . . . . . 6 class 1
62cv 1540 . . . . . 6 class 𝑐
75, 6cfv 6481 . . . . 5 class (𝑐‘1)
8 c2 12180 . . . . . 6 class 2
98, 6cfv 6481 . . . . 5 class (𝑐‘2)
10 cevlf 18115 . . . . 5 class evalF
117, 9, 10co 7346 . . . 4 class ((𝑐‘1) evalF (𝑐‘2))
123cv 1540 . . . . . 6 class 𝑓
13 cc0 11006 . . . . . . . 8 class 0
1413, 6cfv 6481 . . . . . . 7 class (𝑐‘0)
15 c1stf 18075 . . . . . . 7 class 1stF
1614, 7, 15co 7346 . . . . . 6 class ((𝑐‘0) 1stF (𝑐‘1))
17 ccofu 17763 . . . . . 6 class func
1812, 16, 17co 7346 . . . . 5 class (𝑓func ((𝑐‘0) 1stF (𝑐‘1)))
19 c2ndf 18076 . . . . . 6 class 2ndF
2014, 7, 19co 7346 . . . . 5 class ((𝑐‘0) 2ndF (𝑐‘1))
21 cprf 18077 . . . . 5 class ⟨,⟩F
2218, 20, 21co 7346 . . . 4 class ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))
2311, 22, 17co 7346 . . 3 class (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))))
242, 3, 4, 4, 23cmpo 7348 . 2 class (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
251, 24wceq 1541 1 wff uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
Colors of variables: wff setvar class
This definition is referenced by:  uncfval  18140
  Copyright terms: Public domain W3C validator