MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uncf Structured version   Visualization version   GIF version

Definition df-uncf 18285
Description: Define the uncurry functor, which can be defined equationally using evalF. Strictly speaking, the third category argument is not needed, since the resulting functor is extensionally equal regardless, but it is used in the equational definition and is too much work to remove. (Contributed by Mario Carneiro, 13-Jan-2017.)
Assertion
Ref Expression
df-uncf uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
Distinct variable group:   𝑓,𝑐

Detailed syntax breakdown of Definition df-uncf
StepHypRef Expression
1 cuncf 18281 . 2 class uncurryF
2 vc . . 3 setvar 𝑐
3 vf . . 3 setvar 𝑓
4 cvv 3488 . . 3 class V
5 c1 11185 . . . . . 6 class 1
62cv 1536 . . . . . 6 class 𝑐
75, 6cfv 6573 . . . . 5 class (𝑐‘1)
8 c2 12348 . . . . . 6 class 2
98, 6cfv 6573 . . . . 5 class (𝑐‘2)
10 cevlf 18279 . . . . 5 class evalF
117, 9, 10co 7448 . . . 4 class ((𝑐‘1) evalF (𝑐‘2))
123cv 1536 . . . . . 6 class 𝑓
13 cc0 11184 . . . . . . . 8 class 0
1413, 6cfv 6573 . . . . . . 7 class (𝑐‘0)
15 c1stf 18238 . . . . . . 7 class 1stF
1614, 7, 15co 7448 . . . . . 6 class ((𝑐‘0) 1stF (𝑐‘1))
17 ccofu 17920 . . . . . 6 class func
1812, 16, 17co 7448 . . . . 5 class (𝑓func ((𝑐‘0) 1stF (𝑐‘1)))
19 c2ndf 18239 . . . . . 6 class 2ndF
2014, 7, 19co 7448 . . . . 5 class ((𝑐‘0) 2ndF (𝑐‘1))
21 cprf 18240 . . . . 5 class ⟨,⟩F
2218, 20, 21co 7448 . . . 4 class ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))
2311, 22, 17co 7448 . . 3 class (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))))
242, 3, 4, 4, 23cmpo 7450 . 2 class (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
251, 24wceq 1537 1 wff uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
Colors of variables: wff setvar class
This definition is referenced by:  uncfval  18304
  Copyright terms: Public domain W3C validator