MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uncf Structured version   Visualization version   GIF version

Definition df-uncf 17849
Description: Define the uncurry functor, which can be defined equationally using evalF. Strictly speaking, the third category argument is not needed, since the resulting functor is extensionally equal regardless, but it is used in the equational definition and is too much work to remove. (Contributed by Mario Carneiro, 13-Jan-2017.)
Assertion
Ref Expression
df-uncf uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
Distinct variable group:   𝑓,𝑐

Detailed syntax breakdown of Definition df-uncf
StepHypRef Expression
1 cuncf 17845 . 2 class uncurryF
2 vc . . 3 setvar 𝑐
3 vf . . 3 setvar 𝑓
4 cvv 3422 . . 3 class V
5 c1 10803 . . . . . 6 class 1
62cv 1538 . . . . . 6 class 𝑐
75, 6cfv 6418 . . . . 5 class (𝑐‘1)
8 c2 11958 . . . . . 6 class 2
98, 6cfv 6418 . . . . 5 class (𝑐‘2)
10 cevlf 17843 . . . . 5 class evalF
117, 9, 10co 7255 . . . 4 class ((𝑐‘1) evalF (𝑐‘2))
123cv 1538 . . . . . 6 class 𝑓
13 cc0 10802 . . . . . . . 8 class 0
1413, 6cfv 6418 . . . . . . 7 class (𝑐‘0)
15 c1stf 17802 . . . . . . 7 class 1stF
1614, 7, 15co 7255 . . . . . 6 class ((𝑐‘0) 1stF (𝑐‘1))
17 ccofu 17487 . . . . . 6 class func
1812, 16, 17co 7255 . . . . 5 class (𝑓func ((𝑐‘0) 1stF (𝑐‘1)))
19 c2ndf 17803 . . . . . 6 class 2ndF
2014, 7, 19co 7255 . . . . 5 class ((𝑐‘0) 2ndF (𝑐‘1))
21 cprf 17804 . . . . 5 class ⟨,⟩F
2218, 20, 21co 7255 . . . 4 class ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))
2311, 22, 17co 7255 . . 3 class (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))))
242, 3, 4, 4, 23cmpo 7257 . 2 class (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
251, 24wceq 1539 1 wff uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
Colors of variables: wff setvar class
This definition is referenced by:  uncfval  17868
  Copyright terms: Public domain W3C validator