MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uncf Structured version   Visualization version   GIF version

Definition df-uncf 18176
Description: Define the uncurry functor, which can be defined equationally using evalF. Strictly speaking, the third category argument is not needed, since the resulting functor is extensionally equal regardless, but it is used in the equational definition and is too much work to remove. (Contributed by Mario Carneiro, 13-Jan-2017.)
Assertion
Ref Expression
df-uncf uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
Distinct variable group:   𝑓,𝑐

Detailed syntax breakdown of Definition df-uncf
StepHypRef Expression
1 cuncf 18172 . 2 class uncurryF
2 vc . . 3 setvar 𝑐
3 vf . . 3 setvar 𝑓
4 cvv 3447 . . 3 class V
5 c1 11069 . . . . . 6 class 1
62cv 1539 . . . . . 6 class 𝑐
75, 6cfv 6511 . . . . 5 class (𝑐‘1)
8 c2 12241 . . . . . 6 class 2
98, 6cfv 6511 . . . . 5 class (𝑐‘2)
10 cevlf 18170 . . . . 5 class evalF
117, 9, 10co 7387 . . . 4 class ((𝑐‘1) evalF (𝑐‘2))
123cv 1539 . . . . . 6 class 𝑓
13 cc0 11068 . . . . . . . 8 class 0
1413, 6cfv 6511 . . . . . . 7 class (𝑐‘0)
15 c1stf 18130 . . . . . . 7 class 1stF
1614, 7, 15co 7387 . . . . . 6 class ((𝑐‘0) 1stF (𝑐‘1))
17 ccofu 17818 . . . . . 6 class func
1812, 16, 17co 7387 . . . . 5 class (𝑓func ((𝑐‘0) 1stF (𝑐‘1)))
19 c2ndf 18131 . . . . . 6 class 2ndF
2014, 7, 19co 7387 . . . . 5 class ((𝑐‘0) 2ndF (𝑐‘1))
21 cprf 18132 . . . . 5 class ⟨,⟩F
2218, 20, 21co 7387 . . . 4 class ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))
2311, 22, 17co 7387 . . 3 class (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))))
242, 3, 4, 4, 23cmpo 7389 . 2 class (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
251, 24wceq 1540 1 wff uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
Colors of variables: wff setvar class
This definition is referenced by:  uncfval  18195
  Copyright terms: Public domain W3C validator