MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfval Structured version   Visualization version   GIF version

Theorem uncfval 17555
Description: Value of the uncurry functor, which is the reverse of the curry functor, taking 𝐺:𝐶⟶(𝐷𝐸) to uncurryF (𝐺):𝐶 × 𝐷𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
Assertion
Ref Expression
uncfval (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))

Proof of Theorem uncfval
Dummy variables 𝑓 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncfval.g . 2 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 df-uncf 17536 . . . 4 uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
32a1i 11 . . 3 (𝜑 → uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))))))
4 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → 𝑐 = ⟨“𝐶𝐷𝐸”⟩)
54fveq1d 6664 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘1) = (⟨“𝐶𝐷𝐸”⟩‘1))
6 uncfval.c . . . . . . . 8 (𝜑𝐷 ∈ Cat)
7 s3fv1 14306 . . . . . . . 8 (𝐷 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
86, 7syl 17 . . . . . . 7 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
98adantr 484 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
105, 9eqtrd 2793 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘1) = 𝐷)
114fveq1d 6664 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘2) = (⟨“𝐶𝐷𝐸”⟩‘2))
12 uncfval.d . . . . . . . 8 (𝜑𝐸 ∈ Cat)
13 s3fv2 14307 . . . . . . . 8 (𝐸 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1412, 13syl 17 . . . . . . 7 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1514adantr 484 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1611, 15eqtrd 2793 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘2) = 𝐸)
1710, 16oveq12d 7173 . . . 4 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘1) evalF (𝑐‘2)) = (𝐷 evalF 𝐸))
18 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → 𝑓 = 𝐺)
194fveq1d 6664 . . . . . . . 8 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘0) = (⟨“𝐶𝐷𝐸”⟩‘0))
20 uncfval.f . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
21 funcrcl 17197 . . . . . . . . . . . 12 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
2220, 21syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
2322simpld 498 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
24 s3fv0 14305 . . . . . . . . . 10 (𝐶 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2523, 24syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2625adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2719, 26eqtrd 2793 . . . . . . 7 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘0) = 𝐶)
2827, 10oveq12d 7173 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘0) 1stF (𝑐‘1)) = (𝐶 1stF 𝐷))
2918, 28oveq12d 7173 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑓func ((𝑐‘0) 1stF (𝑐‘1))) = (𝐺func (𝐶 1stF 𝐷)))
3027, 10oveq12d 7173 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘0) 2ndF (𝑐‘1)) = (𝐶 2ndF 𝐷))
3129, 30oveq12d 7173 . . . 4 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))) = ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))
3217, 31oveq12d 7173 . . 3 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))) = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
33 s3cli 14295 . . . 4 ⟨“𝐶𝐷𝐸”⟩ ∈ Word V
34 elex 3428 . . . 4 (⟨“𝐶𝐷𝐸”⟩ ∈ Word V → ⟨“𝐶𝐷𝐸”⟩ ∈ V)
3533, 34mp1i 13 . . 3 (𝜑 → ⟨“𝐶𝐷𝐸”⟩ ∈ V)
3620elexd 3430 . . 3 (𝜑𝐺 ∈ V)
37 ovexd 7190 . . 3 (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))) ∈ V)
383, 32, 35, 36, 37ovmpod 7302 . 2 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
391, 38syl5eq 2805 1 (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3409  cfv 6339  (class class class)co 7155  cmpo 7157  0cc0 10580  1c1 10581  2c2 11734  Word cword 13918  ⟨“cs3 14256  Catccat 16998   Func cfunc 17188  func ccofu 17190   FuncCat cfuc 17276   1stF c1stf 17490   2ndF c2ndf 17491   ⟨,⟩F cprf 17492   evalF cevlf 17530   uncurryF cuncf 17532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-fzo 13088  df-hash 13746  df-word 13919  df-concat 13975  df-s1 14002  df-s2 14262  df-s3 14263  df-func 17192  df-uncf 17536
This theorem is referenced by:  uncfcl  17556  uncf1  17557  uncf2  17558
  Copyright terms: Public domain W3C validator