MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfval Structured version   Visualization version   GIF version

Theorem uncfval 18279
Description: Value of the uncurry functor, which is the reverse of the curry functor, taking 𝐺:𝐶⟶(𝐷𝐸) to uncurryF (𝐺):𝐶 × 𝐷𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
Assertion
Ref Expression
uncfval (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))

Proof of Theorem uncfval
Dummy variables 𝑓 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncfval.g . 2 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 df-uncf 18260 . . . 4 uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
32a1i 11 . . 3 (𝜑 → uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))))))
4 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → 𝑐 = ⟨“𝐶𝐷𝐸”⟩)
54fveq1d 6908 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘1) = (⟨“𝐶𝐷𝐸”⟩‘1))
6 uncfval.c . . . . . . . 8 (𝜑𝐷 ∈ Cat)
7 s3fv1 14931 . . . . . . . 8 (𝐷 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
86, 7syl 17 . . . . . . 7 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
98adantr 480 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
105, 9eqtrd 2777 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘1) = 𝐷)
114fveq1d 6908 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘2) = (⟨“𝐶𝐷𝐸”⟩‘2))
12 uncfval.d . . . . . . . 8 (𝜑𝐸 ∈ Cat)
13 s3fv2 14932 . . . . . . . 8 (𝐸 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1412, 13syl 17 . . . . . . 7 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1514adantr 480 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1611, 15eqtrd 2777 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘2) = 𝐸)
1710, 16oveq12d 7449 . . . 4 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘1) evalF (𝑐‘2)) = (𝐷 evalF 𝐸))
18 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → 𝑓 = 𝐺)
194fveq1d 6908 . . . . . . . 8 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘0) = (⟨“𝐶𝐷𝐸”⟩‘0))
20 uncfval.f . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
21 funcrcl 17908 . . . . . . . . . . . 12 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
2220, 21syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
2322simpld 494 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
24 s3fv0 14930 . . . . . . . . . 10 (𝐶 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2523, 24syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2625adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2719, 26eqtrd 2777 . . . . . . 7 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘0) = 𝐶)
2827, 10oveq12d 7449 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘0) 1stF (𝑐‘1)) = (𝐶 1stF 𝐷))
2918, 28oveq12d 7449 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑓func ((𝑐‘0) 1stF (𝑐‘1))) = (𝐺func (𝐶 1stF 𝐷)))
3027, 10oveq12d 7449 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘0) 2ndF (𝑐‘1)) = (𝐶 2ndF 𝐷))
3129, 30oveq12d 7449 . . . 4 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))) = ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))
3217, 31oveq12d 7449 . . 3 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))) = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
33 s3cli 14920 . . . 4 ⟨“𝐶𝐷𝐸”⟩ ∈ Word V
34 elex 3501 . . . 4 (⟨“𝐶𝐷𝐸”⟩ ∈ Word V → ⟨“𝐶𝐷𝐸”⟩ ∈ V)
3533, 34mp1i 13 . . 3 (𝜑 → ⟨“𝐶𝐷𝐸”⟩ ∈ V)
3620elexd 3504 . . 3 (𝜑𝐺 ∈ V)
37 ovexd 7466 . . 3 (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))) ∈ V)
383, 32, 35, 36, 37ovmpod 7585 . 2 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
391, 38eqtrid 2789 1 (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cfv 6561  (class class class)co 7431  cmpo 7433  0cc0 11155  1c1 11156  2c2 12321  Word cword 14552  ⟨“cs3 14881  Catccat 17707   Func cfunc 17899  func ccofu 17901   FuncCat cfuc 17990   1stF c1stf 18214   2ndF c2ndf 18215   ⟨,⟩F cprf 18216   evalF cevlf 18254   uncurryF cuncf 18256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-func 17903  df-uncf 18260
This theorem is referenced by:  uncfcl  18280  uncf1  18281  uncf2  18282
  Copyright terms: Public domain W3C validator