Step | Hyp | Ref
| Expression |
1 | | uncfval.g |
. 2
⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF
𝐺) |
2 | | df-uncf 17536 |
. . . 4
⊢
uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2))
∘func ((𝑓 ∘func ((𝑐‘0)
1stF (𝑐‘1))) 〈,〉F
((𝑐‘0)
2ndF (𝑐‘1))))) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → uncurryF
= (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1)
evalF (𝑐‘2)) ∘func
((𝑓
∘func ((𝑐‘0) 1stF
(𝑐‘1)))
〈,〉F ((𝑐‘0) 2ndF
(𝑐‘1)))))) |
4 | | simprl 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → 𝑐 = 〈“𝐶𝐷𝐸”〉) |
5 | 4 | fveq1d 6664 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → (𝑐‘1) = (〈“𝐶𝐷𝐸”〉‘1)) |
6 | | uncfval.c |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ Cat) |
7 | | s3fv1 14306 |
. . . . . . . 8
⊢ (𝐷 ∈ Cat →
(〈“𝐶𝐷𝐸”〉‘1) = 𝐷) |
8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (〈“𝐶𝐷𝐸”〉‘1) = 𝐷) |
9 | 8 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → (〈“𝐶𝐷𝐸”〉‘1) = 𝐷) |
10 | 5, 9 | eqtrd 2793 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → (𝑐‘1) = 𝐷) |
11 | 4 | fveq1d 6664 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → (𝑐‘2) = (〈“𝐶𝐷𝐸”〉‘2)) |
12 | | uncfval.d |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ Cat) |
13 | | s3fv2 14307 |
. . . . . . . 8
⊢ (𝐸 ∈ Cat →
(〈“𝐶𝐷𝐸”〉‘2) = 𝐸) |
14 | 12, 13 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (〈“𝐶𝐷𝐸”〉‘2) = 𝐸) |
15 | 14 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → (〈“𝐶𝐷𝐸”〉‘2) = 𝐸) |
16 | 11, 15 | eqtrd 2793 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → (𝑐‘2) = 𝐸) |
17 | 10, 16 | oveq12d 7173 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → ((𝑐‘1) evalF (𝑐‘2)) = (𝐷 evalF 𝐸)) |
18 | | simprr 772 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → 𝑓 = 𝐺) |
19 | 4 | fveq1d 6664 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → (𝑐‘0) = (〈“𝐶𝐷𝐸”〉‘0)) |
20 | | uncfval.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
21 | | funcrcl 17197 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) |
23 | 22 | simpld 498 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ Cat) |
24 | | s3fv0 14305 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat →
(〈“𝐶𝐷𝐸”〉‘0) = 𝐶) |
25 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (〈“𝐶𝐷𝐸”〉‘0) = 𝐶) |
26 | 25 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → (〈“𝐶𝐷𝐸”〉‘0) = 𝐶) |
27 | 19, 26 | eqtrd 2793 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → (𝑐‘0) = 𝐶) |
28 | 27, 10 | oveq12d 7173 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → ((𝑐‘0) 1stF
(𝑐‘1)) = (𝐶
1stF 𝐷)) |
29 | 18, 28 | oveq12d 7173 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → (𝑓 ∘func ((𝑐‘0)
1stF (𝑐‘1))) = (𝐺 ∘func (𝐶
1stF 𝐷))) |
30 | 27, 10 | oveq12d 7173 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → ((𝑐‘0) 2ndF
(𝑐‘1)) = (𝐶
2ndF 𝐷)) |
31 | 29, 30 | oveq12d 7173 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → ((𝑓 ∘func ((𝑐‘0)
1stF (𝑐‘1))) 〈,〉F
((𝑐‘0)
2ndF (𝑐‘1))) = ((𝐺 ∘func (𝐶
1stF 𝐷)) 〈,〉F (𝐶
2ndF 𝐷))) |
32 | 17, 31 | oveq12d 7173 |
. . 3
⊢ ((𝜑 ∧ (𝑐 = 〈“𝐶𝐷𝐸”〉 ∧ 𝑓 = 𝐺)) → (((𝑐‘1) evalF (𝑐‘2))
∘func ((𝑓 ∘func ((𝑐‘0)
1stF (𝑐‘1))) 〈,〉F
((𝑐‘0)
2ndF (𝑐‘1)))) = ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func
(𝐶
1stF 𝐷)) 〈,〉F (𝐶
2ndF 𝐷)))) |
33 | | s3cli 14295 |
. . . 4
⊢
〈“𝐶𝐷𝐸”〉 ∈ Word V |
34 | | elex 3428 |
. . . 4
⊢
(〈“𝐶𝐷𝐸”〉 ∈ Word V →
〈“𝐶𝐷𝐸”〉 ∈ V) |
35 | 33, 34 | mp1i 13 |
. . 3
⊢ (𝜑 → 〈“𝐶𝐷𝐸”〉 ∈ V) |
36 | 20 | elexd 3430 |
. . 3
⊢ (𝜑 → 𝐺 ∈ V) |
37 | | ovexd 7190 |
. . 3
⊢ (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func
(𝐶
1stF 𝐷)) 〈,〉F (𝐶
2ndF 𝐷))) ∈ V) |
38 | 3, 32, 35, 36, 37 | ovmpod 7302 |
. 2
⊢ (𝜑 → (〈“𝐶𝐷𝐸”〉 uncurryF
𝐺) = ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func
(𝐶
1stF 𝐷)) 〈,〉F (𝐶
2ndF 𝐷)))) |
39 | 1, 38 | syl5eq 2805 |
1
⊢ (𝜑 → 𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func
(𝐶
1stF 𝐷)) 〈,〉F (𝐶
2ndF 𝐷)))) |