Detailed syntax breakdown of Definition df-upgr
| Step | Hyp | Ref
| Expression |
| 1 | | cupgr 29097 |
. 2
class
UPGraph |
| 2 | | ve |
. . . . . . . 8
setvar 𝑒 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑒 |
| 4 | 3 | cdm 5685 |
. . . . . 6
class dom 𝑒 |
| 5 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 6 | 5 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 7 | | chash 14369 |
. . . . . . . . 9
class
♯ |
| 8 | 6, 7 | cfv 6561 |
. . . . . . . 8
class
(♯‘𝑥) |
| 9 | | c2 12321 |
. . . . . . . 8
class
2 |
| 10 | | cle 11296 |
. . . . . . . 8
class
≤ |
| 11 | 8, 9, 10 | wbr 5143 |
. . . . . . 7
wff
(♯‘𝑥)
≤ 2 |
| 12 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
| 13 | 12 | cv 1539 |
. . . . . . . . 9
class 𝑣 |
| 14 | 13 | cpw 4600 |
. . . . . . . 8
class 𝒫
𝑣 |
| 15 | | c0 4333 |
. . . . . . . . 9
class
∅ |
| 16 | 15 | csn 4626 |
. . . . . . . 8
class
{∅} |
| 17 | 14, 16 | cdif 3948 |
. . . . . . 7
class
(𝒫 𝑣 ∖
{∅}) |
| 18 | 11, 5, 17 | crab 3436 |
. . . . . 6
class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2} |
| 19 | 4, 18, 3 | wf 6557 |
. . . . 5
wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2} |
| 20 | | vg |
. . . . . . 7
setvar 𝑔 |
| 21 | 20 | cv 1539 |
. . . . . 6
class 𝑔 |
| 22 | | ciedg 29014 |
. . . . . 6
class
iEdg |
| 23 | 21, 22 | cfv 6561 |
. . . . 5
class
(iEdg‘𝑔) |
| 24 | 19, 2, 23 | wsbc 3788 |
. . . 4
wff
[(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2} |
| 25 | | cvtx 29013 |
. . . . 5
class
Vtx |
| 26 | 21, 25 | cfv 6561 |
. . . 4
class
(Vtx‘𝑔) |
| 27 | 24, 12, 26 | wsbc 3788 |
. . 3
wff
[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2} |
| 28 | 27, 20 | cab 2714 |
. 2
class {𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}} |
| 29 | 1, 28 | wceq 1540 |
1
wff UPGraph =
{𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}} |