![]() |
Metamath
Proof Explorer Theorem List (p. 288 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tgasa1 28701 | Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of [Schwabhauser] p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ πΏ = (LineGβπΊ) & β’ (π β Β¬ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) & β’ (π β (π΄ β π΅) = (π· β πΈ)) & β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ©) & β’ (π β β¨βπΆπ΄π΅ββ©(cgrAβπΊ)β¨βπΉπ·πΈββ©) β β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) | ||
Theorem | tgasa 28702 | Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of [Schwabhauser] p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ πΏ = (LineGβπΊ) & β’ (π β Β¬ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) & β’ (π β (π΄ β π΅) = (π· β πΈ)) & β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ©) & β’ (π β β¨βπΆπ΄π΅ββ©(cgrAβπΊ)β¨βπΉπ·πΈββ©) β β’ (π β β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ·πΈπΉββ©) | ||
Theorem | tgsss1 28703 | Third congruence theorem: SSS (Side-Side-Side): If the three pairs of sides of two triangles are equal in length, then the triangles are congruent. Theorem 11.51 of [Schwabhauser] p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β (π΄ β π΅) = (π· β πΈ)) & β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) & β’ (π β (πΆ β π΄) = (πΉ β π·)) & β’ (π β π΄ β π΅) & β’ (π β π΅ β πΆ) & β’ (π β πΆ β π΄) β β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ©) | ||
Theorem | tgsss2 28704 | Third congruence theorem: SSS. Theorem 11.51 of [Schwabhauser] p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β (π΄ β π΅) = (π· β πΈ)) & β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) & β’ (π β (πΆ β π΄) = (πΉ β π·)) & β’ (π β π΄ β π΅) & β’ (π β π΅ β πΆ) & β’ (π β πΆ β π΄) β β’ (π β β¨βπΆπ΄π΅ββ©(cgrAβπΊ)β¨βπΉπ·πΈββ©) | ||
Theorem | tgsss3 28705 | Third congruence theorem: SSS. Theorem 11.51 of [Schwabhauser] p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β (π΄ β π΅) = (π· β πΈ)) & β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) & β’ (π β (πΆ β π΄) = (πΉ β π·)) & β’ (π β π΄ β π΅) & β’ (π β π΅ β πΆ) & β’ (π β πΆ β π΄) β β’ (π β β¨βπ΅πΆπ΄ββ©(cgrAβπΊ)β¨βπΈπΉπ·ββ©) | ||
Theorem | dfcgrg2 28706 | Congruence for two triangles can also be defined as congruence of sides and angles (6 parts). This is often the actual textbook definition of triangle congruence, see for example https://en.wikipedia.org/wiki/Congruence_(geometry)#Congruence_of_triangles. With this definition, the "SSS" congruence theorem has an additional part, namely, that triangle congruence implies congruence of the sides (which means equality of the lengths). Because our development of elementary geometry strives to closely follow Schwabhaeuser's, our original definition of shape congruence, df-cgrg 28354, already covers that part: see trgcgr 28359. This theorem is also named "CPCTC", which stands for "Corresponding Parts of Congruent Triangles are Congruent", see https://en.wikipedia.org/wiki/Congruence_(geometry)#CPCTC 28359. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π΄ β π΅) & β’ (π β π΅ β πΆ) & β’ (π β πΆ β π΄) β β’ (π β (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ·πΈπΉββ© β (((π΄ β π΅) = (π· β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΄) = (πΉ β π·)) β§ (β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ© β§ β¨βπΆπ΄π΅ββ©(cgrAβπΊ)β¨βπΉπ·πΈββ© β§ β¨βπ΅πΆπ΄ββ©(cgrAβπΊ)β¨βπΈπΉπ·ββ©)))) | ||
Theorem | isoas 28707 | Congruence theorem for isocele triangles: if two angles of a triangle are congruent, then the corresponding sides also are. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β Β¬ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) & β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ΄πΆπ΅ββ©) β β’ (π β (π΄ β π΅) = (π΄ β πΆ)) | ||
Syntax | ceqlg 28708 | Declare the class of equilateral triangles. |
class eqltrG | ||
Definition | df-eqlg 28709* | Define the class of equilateral triangles. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
β’ eqltrG = (π β V β¦ {π₯ β ((Baseβπ) βm (0..^3)) β£ π₯(cgrGβπ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©}) | ||
Theorem | iseqlg 28710 | Property of a triangle being equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) β β’ (π β (β¨βπ΄π΅πΆββ© β (eqltrGβπΊ) β β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ΅πΆπ΄ββ©)) | ||
Theorem | iseqlgd 28711 | Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β (π΄ β π΅) = (π΅ β πΆ)) & β’ (π β (π΅ β πΆ) = (πΆ β π΄)) & β’ (π β (πΆ β π΄) = (π΄ β π΅)) β β’ (π β β¨βπ΄π΅πΆββ© β (eqltrGβπΊ)) | ||
Theorem | f1otrgds 28712* | Convenient lemma for f1otrg 28714. (Contributed by Thierry Arnoux, 19-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ π· = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π΅ = (Baseβπ») & β’ πΈ = (distβπ») & β’ π½ = (Itvβπ») & β’ (π β πΉ:π΅β1-1-ontoβπ) & β’ ((π β§ (π β π΅ β§ π β π΅)) β (ππΈπ) = ((πΉβπ)π·(πΉβπ))) & β’ ((π β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β (ππ½π) β (πΉβπ) β ((πΉβπ)πΌ(πΉβπ)))) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (ππΈπ) = ((πΉβπ)π·(πΉβπ))) | ||
Theorem | f1otrgitv 28713* | Convenient lemma for f1otrg 28714. (Contributed by Thierry Arnoux, 19-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ π· = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π΅ = (Baseβπ») & β’ πΈ = (distβπ») & β’ π½ = (Itvβπ») & β’ (π β πΉ:π΅β1-1-ontoβπ) & β’ ((π β§ (π β π΅ β§ π β π΅)) β (ππΈπ) = ((πΉβπ)π·(πΉβπ))) & β’ ((π β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β (ππ½π) β (πΉβπ) β ((πΉβπ)πΌ(πΉβπ)))) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π β (ππ½π) β (πΉβπ) β ((πΉβπ)πΌ(πΉβπ)))) | ||
Theorem | f1otrg 28714* | A bijection between bases which conserves distances and intervals conserves also geometries. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ π· = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π΅ = (Baseβπ») & β’ πΈ = (distβπ») & β’ π½ = (Itvβπ») & β’ (π β πΉ:π΅β1-1-ontoβπ) & β’ ((π β§ (π β π΅ β§ π β π΅)) β (ππΈπ) = ((πΉβπ)π·(πΉβπ))) & β’ ((π β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β (ππ½π) β (πΉβπ) β ((πΉβπ)πΌ(πΉβπ)))) & β’ (π β π» β π) & β’ (π β πΊ β TarskiG) & β’ (π β (LineGβπ») = (π₯ β π΅, π¦ β (π΅ β {π₯}) β¦ {π§ β π΅ β£ (π§ β (π₯π½π¦) β¨ π₯ β (π§π½π¦) β¨ π¦ β (π₯π½π§))})) β β’ (π β π» β TarskiG) | ||
Theorem | f1otrge 28715* | A bijection between bases which conserves distances and intervals conserves also the property of being a Euclidean geometry. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ π· = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ π΅ = (Baseβπ») & β’ πΈ = (distβπ») & β’ π½ = (Itvβπ») & β’ (π β πΉ:π΅β1-1-ontoβπ) & β’ ((π β§ (π β π΅ β§ π β π΅)) β (ππΈπ) = ((πΉβπ)π·(πΉβπ))) & β’ ((π β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β (ππ½π) β (πΉβπ) β ((πΉβπ)πΌ(πΉβπ)))) & β’ (π β π» β π) & β’ (π β πΊ β TarskiGE) β β’ (π β π» β TarskiGE) | ||
Syntax | cttg 28716 | Function to convert an algebraic structure to a Tarski geometry. |
class toTG | ||
Definition | df-ttg 28717* | Define a function converting a subcomplex Hilbert space to a Tarski Geometry. It does so by equipping the structure with a betweenness operation. Note that because the scalar product is applied over the interval (0[,]1), only spaces whose scalar field is a superset of that interval can be considered. (Contributed by Thierry Arnoux, 24-Mar-2019.) |
β’ toTG = (π€ β V β¦ β¦(π₯ β (Baseβπ€), π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ βπ β (0[,]1)(π§(-gβπ€)π₯) = (π( Β·π βπ€)(π¦(-gβπ€)π₯))}) / πβ¦((π€ sSet β¨(Itvβndx), πβ©) sSet β¨(LineGβndx), (π₯ β (Baseβπ€), π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©)) | ||
Theorem | ttgval 28718* | Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof shortened by AV, 9-Nov-2024.) |
β’ πΊ = (toTGβπ») & β’ π΅ = (Baseβπ») & β’ β = (-gβπ») & β’ Β· = ( Β·π βπ») & β’ πΌ = (ItvβπΊ) β β’ (π» β π β (πΊ = ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))})β©) β§ πΌ = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}))) | ||
Theorem | ttgvalOLD 28719* | Obsolete proof of ttgval 28718 as of 9-Nov-2024. Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ πΊ = (toTGβπ») & β’ π΅ = (Baseβπ») & β’ β = (-gβπ») & β’ Β· = ( Β·π βπ») & β’ πΌ = (ItvβπΊ) β β’ (π» β π β (πΊ = ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))})β©) β§ πΌ = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}))) | ||
Theorem | ttglem 28720 | Lemma for ttgbas 28722, ttgvsca 28727 etc. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.) |
β’ πΊ = (toTGβπ») & β’ πΈ = Slot (πΈβndx) & β’ (πΈβndx) β (LineGβndx) & β’ (πΈβndx) β (Itvβndx) β β’ (πΈβπ») = (πΈβπΊ) | ||
Theorem | ttglemOLD 28721 | Obsolete version of ttglem 28720 as of 29-Oct-2024. Lemma for ttgbas 28722 and ttgvsca 28727. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ πΊ = (toTGβπ») & β’ πΈ = Slot π & β’ π β β & β’ π < ;16 β β’ (πΈβπ») = (πΈβπΊ) | ||
Theorem | ttgbas 28722 | The base set of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
β’ πΊ = (toTGβπ») & β’ π΅ = (Baseβπ») β β’ π΅ = (BaseβπΊ) | ||
Theorem | ttgbasOLD 28723 | Obsolete proof of ttgbas 28722 as of 29-Oct-2024. The base set of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ πΊ = (toTGβπ») & β’ π΅ = (Baseβπ») β β’ π΅ = (BaseβπΊ) | ||
Theorem | ttgplusg 28724 | The addition operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
β’ πΊ = (toTGβπ») & β’ + = (+gβπ») β β’ + = (+gβπΊ) | ||
Theorem | ttgplusgOLD 28725 | Obsolete proof of ttgplusg 28724 as of 29-Oct-2024. The addition operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ πΊ = (toTGβπ») & β’ + = (+gβπ») β β’ + = (+gβπΊ) | ||
Theorem | ttgsub 28726 | The subtraction operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
β’ πΊ = (toTGβπ») & β’ β = (-gβπ») β β’ β = (-gβπΊ) | ||
Theorem | ttgvsca 28727 | The scalar product of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
β’ πΊ = (toTGβπ») & β’ Β· = ( Β·π βπ») β β’ Β· = ( Β·π βπΊ) | ||
Theorem | ttgvscaOLD 28728 | Obsolete proof of ttgvsca 28727 as of 29-Oct-2024. The scalar product of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ πΊ = (toTGβπ») & β’ Β· = ( Β·π βπ») β β’ Β· = ( Β·π βπΊ) | ||
Theorem | ttgds 28729 | The metric of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
β’ πΊ = (toTGβπ») & β’ π· = (distβπ») β β’ π· = (distβπΊ) | ||
Theorem | ttgdsOLD 28730 | Obsolete proof of ttgds 28729 as of 29-Oct-2024. The metric of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ πΊ = (toTGβπ») & β’ π· = (distβπ») β β’ π· = (distβπΊ) | ||
Theorem | ttgitvval 28731* | Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
β’ πΊ = (toTGβπ») & β’ πΌ = (ItvβπΊ) & β’ π = (Baseβπ») & β’ β = (-gβπ») & β’ Β· = ( Β·π βπ») β β’ ((π» β π β§ π β π β§ π β π) β (ππΌπ) = {π§ β π β£ βπ β (0[,]1)(π§ β π) = (π Β· (π β π))}) | ||
Theorem | ttgelitv 28732* | Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
β’ πΊ = (toTGβπ») & β’ πΌ = (ItvβπΊ) & β’ π = (Baseβπ») & β’ β = (-gβπ») & β’ Β· = ( Β·π βπ») & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π» β π) & β’ (π β π β π) β β’ (π β (π β (ππΌπ) β βπ β (0[,]1)(π β π) = (π Β· (π β π)))) | ||
Theorem | ttgbtwnid 28733 | Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.) |
β’ πΊ = (toTGβπ») & β’ πΌ = (ItvβπΊ) & β’ π = (Baseβπ») & β’ β = (-gβπ») & β’ Β· = ( Β·π βπ») & β’ (π β π β π) & β’ (π β π β π) & β’ π = (Baseβ(Scalarβπ»)) & β’ (π β (0[,]1) β π ) & β’ (π β π» β βMod) & β’ (π β π β (ππΌπ)) β β’ (π β π = π) | ||
Theorem | ttgcontlem1 28734 | Lemma for % ttgcont . (Contributed by Thierry Arnoux, 24-May-2019.) |
β’ πΊ = (toTGβπ») & β’ πΌ = (ItvβπΊ) & β’ π = (Baseβπ») & β’ β = (-gβπ») & β’ Β· = ( Β·π βπ») & β’ (π β π β π) & β’ (π β π β π) & β’ π = (Baseβ(Scalarβπ»)) & β’ (π β (0[,]1) β π ) & β’ + = (+gβπ») & β’ (π β π» β βVec) & β’ (π β π΄ β π) & β’ (π β π β π) & β’ (π β π β 0) & β’ (π β πΎ β 0) & β’ (π β πΎ β 1) & β’ (π β πΏ β π) & β’ (π β πΏ β€ (π / πΎ)) & β’ (π β πΏ β (0[,]1)) & β’ (π β πΎ β (0[,]1)) & β’ (π β π β (0[,]πΏ)) & β’ (π β (π β π΄) = (πΎ Β· (π β π΄))) & β’ (π β (π β π΄) = (π Β· (π β π΄))) & β’ (π β π΅ = (π΄ + (πΏ Β· (π β π΄)))) β β’ (π β π΅ β (ππΌπ)) | ||
Theorem | xmstrkgc 28735 | Any metric space fulfills Tarski's geometry axioms of congruence. (Contributed by Thierry Arnoux, 13-Mar-2019.) |
β’ (πΊ β βMetSp β πΊ β TarskiGC) | ||
Theorem | cchhllem 28736* | Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.) |
β’ πΆ = (((subringAlg ββfld)ββ) sSet β¨(Β·πβndx), (π₯ β β, π¦ β β β¦ (π₯ Β· (ββπ¦)))β©) & β’ πΈ = Slot (πΈβndx) & β’ (Scalarβndx) β (πΈβndx) & β’ ( Β·π βndx) β (πΈβndx) & β’ (Β·πβndx) β (πΈβndx) β β’ (πΈββfld) = (πΈβπΆ) | ||
Theorem | cchhllemOLD 28737* | Obsolete version of cchhllem 28736 as of 29-Oct-2024. Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ πΆ = (((subringAlg ββfld)ββ) sSet β¨(Β·πβndx), (π₯ β β, π¦ β β β¦ (π₯ Β· (ββπ¦)))β©) & β’ πΈ = Slot π & β’ π β β & β’ (π < 5 β¨ 8 < π) β β’ (πΈββfld) = (πΈβπΆ) | ||
Syntax | cee 28738 | Declare the syntax for the Euclidean space generator. |
class πΌ | ||
Syntax | cbtwn 28739 | Declare the syntax for the Euclidean betweenness predicate. |
class Btwn | ||
Syntax | ccgr 28740 | Declare the syntax for the Euclidean congruence predicate. |
class Cgr | ||
Definition | df-ee 28741 | Define the Euclidean space generator. For details, see elee 28744. (Contributed by Scott Fenton, 3-Jun-2013.) |
β’ πΌ = (π β β β¦ (β βm (1...π))) | ||
Definition | df-btwn 28742* | Define the Euclidean betweenness predicate. For details, see brbtwn 28749. (Contributed by Scott Fenton, 3-Jun-2013.) |
β’ Btwn = β‘{β¨β¨π₯, π§β©, π¦β© β£ βπ β β ((π₯ β (πΌβπ) β§ π§ β (πΌβπ) β§ π¦ β (πΌβπ)) β§ βπ‘ β (0[,]1)βπ β (1...π)(π¦βπ) = (((1 β π‘) Β· (π₯βπ)) + (π‘ Β· (π§βπ))))} | ||
Definition | df-cgr 28743* | Define the Euclidean congruence predicate. For details, see brcgr 28750. (Contributed by Scott Fenton, 3-Jun-2013.) |
β’ Cgr = {β¨π₯, π¦β© β£ βπ β β ((π₯ β ((πΌβπ) Γ (πΌβπ)) β§ π¦ β ((πΌβπ) Γ (πΌβπ))) β§ Ξ£π β (1...π)((((1st βπ₯)βπ) β ((2nd βπ₯)βπ))β2) = Ξ£π β (1...π)((((1st βπ¦)βπ) β ((2nd βπ¦)βπ))β2))} | ||
Theorem | elee 28744 | Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over π space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.) |
β’ (π β β β (π΄ β (πΌβπ) β π΄:(1...π)βΆβ)) | ||
Theorem | mptelee 28745* | A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.) |
β’ (π β β β ((π β (1...π) β¦ (π΄πΉπ΅)) β (πΌβπ) β βπ β (1...π)(π΄πΉπ΅) β β)) | ||
Theorem | eleenn 28746 | If π΄ is in (πΌβπ), then π is a natural. (Contributed by Scott Fenton, 1-Jul-2013.) |
β’ (π΄ β (πΌβπ) β π β β) | ||
Theorem | eleei 28747 | The forward direction of elee 28744. (Contributed by Scott Fenton, 1-Jul-2013.) |
β’ (π΄ β (πΌβπ) β π΄:(1...π)βΆβ) | ||
Theorem | eedimeq 28748 | A point belongs to at most one Euclidean space. (Contributed by Scott Fenton, 1-Jul-2013.) |
β’ ((π΄ β (πΌβπ) β§ π΄ β (πΌβπ)) β π = π) | ||
Theorem | brbtwn 28749* | The binary relation form of the betweenness predicate. The statement π΄ Btwn β¨π΅, πΆβ© should be informally read as "π΄ lies on a line segment between π΅ and πΆ. This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.) |
β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ)) β (π΄ Btwn β¨π΅, πΆβ© β βπ‘ β (0[,]1)βπ β (1...π)(π΄βπ) = (((1 β π‘) Β· (π΅βπ)) + (π‘ Β· (πΆβπ))))) | ||
Theorem | brcgr 28750* | The binary relation form of the congruence predicate. The statement β¨π΄, π΅β©Cgrβ¨πΆ, π·β© should be read informally as "the π dimensional point π΄ is as far from π΅ as πΆ is from π·, or "the line segment π΄π΅ is congruent to the line segment πΆπ·. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.) |
β’ (((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β§ (πΆ β (πΌβπ) β§ π· β (πΌβπ))) β (β¨π΄, π΅β©Cgrβ¨πΆ, π·β© β Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) = Ξ£π β (1...π)(((πΆβπ) β (π·βπ))β2))) | ||
Theorem | fveere 28751 | The function value of a point is a real. (Contributed by Scott Fenton, 10-Jun-2013.) |
β’ ((π΄ β (πΌβπ) β§ πΌ β (1...π)) β (π΄βπΌ) β β) | ||
Theorem | fveecn 28752 | The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013.) |
β’ ((π΄ β (πΌβπ) β§ πΌ β (1...π)) β (π΄βπΌ) β β) | ||
Theorem | eqeefv 28753* | Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013.) |
β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β (π΄ = π΅ β βπ β (1...π)(π΄βπ) = (π΅βπ))) | ||
Theorem | eqeelen 28754* | Two points are equal iff the square of the distance between them is zero. (Contributed by Scott Fenton, 10-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.) |
β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β (π΄ = π΅ β Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) = 0)) | ||
Theorem | brbtwn2 28755* | Alternate characterization of betweenness, with no existential quantifiers. (Contributed by Scott Fenton, 24-Jun-2013.) |
β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ)) β (π΄ Btwn β¨π΅, πΆβ© β (βπ β (1...π)(((π΅βπ) β (π΄βπ)) Β· ((πΆβπ) β (π΄βπ))) β€ 0 β§ βπ β (1...π)βπ β (1...π)(((π΅βπ) β (π΄βπ)) Β· ((πΆβπ) β (π΄βπ))) = (((π΅βπ) β (π΄βπ)) Β· ((πΆβπ) β (π΄βπ)))))) | ||
Theorem | colinearalglem1 28756 | Lemma for colinearalg 28760. Expand out a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.) |
β’ (((π΄ β β β§ π΅ β β β§ πΆ β β) β§ (π· β β β§ πΈ β β β§ πΉ β β)) β (((π΅ β π΄) Β· (πΉ β π·)) = ((πΈ β π·) Β· (πΆ β π΄)) β ((π΅ Β· πΉ) β ((π΄ Β· πΉ) + (π΅ Β· π·))) = ((πΆ Β· πΈ) β ((π΄ Β· πΈ) + (πΆ Β· π·))))) | ||
Theorem | colinearalglem2 28757* | Lemma for colinearalg 28760. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.) |
β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ)) β (βπ β (1...π)βπ β (1...π)(((π΅βπ) β (π΄βπ)) Β· ((πΆβπ) β (π΄βπ))) = (((π΅βπ) β (π΄βπ)) Β· ((πΆβπ) β (π΄βπ))) β βπ β (1...π)βπ β (1...π)(((πΆβπ) β (π΅βπ)) Β· ((π΄βπ) β (π΅βπ))) = (((πΆβπ) β (π΅βπ)) Β· ((π΄βπ) β (π΅βπ))))) | ||
Theorem | colinearalglem3 28758* | Lemma for colinearalg 28760. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.) |
β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ)) β (βπ β (1...π)βπ β (1...π)(((π΅βπ) β (π΄βπ)) Β· ((πΆβπ) β (π΄βπ))) = (((π΅βπ) β (π΄βπ)) Β· ((πΆβπ) β (π΄βπ))) β βπ β (1...π)βπ β (1...π)(((π΄βπ) β (πΆβπ)) Β· ((π΅βπ) β (πΆβπ))) = (((π΄βπ) β (πΆβπ)) Β· ((π΅βπ) β (πΆβπ))))) | ||
Theorem | colinearalglem4 28759* | Lemma for colinearalg 28760. Prove a disjunction that will be needed in the final proof. (Contributed by Scott Fenton, 27-Jun-2013.) |
β’ (((π΄ β (πΌβπ) β§ πΆ β (πΌβπ)) β§ πΎ β β) β (βπ β (1...π)((((πΎ Β· ((πΆβπ) β (π΄βπ))) + (π΄βπ)) β (π΄βπ)) Β· ((πΆβπ) β (π΄βπ))) β€ 0 β¨ βπ β (1...π)(((πΆβπ) β ((πΎ Β· ((πΆβπ) β (π΄βπ))) + (π΄βπ))) Β· ((π΄βπ) β ((πΎ Β· ((πΆβπ) β (π΄βπ))) + (π΄βπ)))) β€ 0 β¨ βπ β (1...π)(((π΄βπ) β (πΆβπ)) Β· (((πΎ Β· ((πΆβπ) β (π΄βπ))) + (π΄βπ)) β (πΆβπ))) β€ 0)) | ||
Theorem | colinearalg 28760* | An algebraic characterization of colinearity. Note the similarity to brbtwn2 28755. (Contributed by Scott Fenton, 24-Jun-2013.) |
β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ)) β ((π΄ Btwn β¨π΅, πΆβ© β¨ π΅ Btwn β¨πΆ, π΄β© β¨ πΆ Btwn β¨π΄, π΅β©) β βπ β (1...π)βπ β (1...π)(((π΅βπ) β (π΄βπ)) Β· ((πΆβπ) β (π΄βπ))) = (((π΅βπ) β (π΄βπ)) Β· ((πΆβπ) β (π΄βπ))))) | ||
Theorem | eleesub 28761* | Membership of a subtraction mapping in a Euclidean space. (Contributed by Scott Fenton, 17-Jul-2013.) |
β’ πΆ = (π β (1...π) β¦ ((π΄βπ) β (π΅βπ))) β β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β πΆ β (πΌβπ)) | ||
Theorem | eleesubd 28762* | Membership of a subtraction mapping in a Euclidean space. Deduction form of eleesub 28761. (Contributed by Scott Fenton, 17-Jul-2013.) |
β’ (π β πΆ = (π β (1...π) β¦ ((π΄βπ) β (π΅βπ)))) β β’ ((π β§ π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β πΆ β (πΌβπ)) | ||
Theorem | axdimuniq 28763 | The unique dimension axiom. If a point is in π dimensional space and in π dimensional space, then π = π. This axiom is not traditionally presented with Tarski's axioms, but we require it here as we are considering spaces in arbitrary dimensions. (Contributed by Scott Fenton, 24-Sep-2013.) |
β’ (((π β β β§ π΄ β (πΌβπ)) β§ (π β β β§ π΄ β (πΌβπ))) β π = π) | ||
Theorem | axcgrrflx 28764 | π΄ is as far from π΅ as π΅ is from π΄. Axiom A1 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.) |
β’ ((π β β β§ π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β β¨π΄, π΅β©Cgrβ¨π΅, π΄β©) | ||
Theorem | axcgrtr 28765 | Congruence is transitive. Axiom A2 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.) |
β’ ((π β β β§ (π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ)) β§ (π· β (πΌβπ) β§ πΈ β (πΌβπ) β§ πΉ β (πΌβπ))) β ((β¨π΄, π΅β©Cgrβ¨πΆ, π·β© β§ β¨π΄, π΅β©Cgrβ¨πΈ, πΉβ©) β β¨πΆ, π·β©Cgrβ¨πΈ, πΉβ©)) | ||
Theorem | axcgrid 28766 | If there is no distance between π΄ and π΅, then π΄ = π΅. Axiom A3 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.) |
β’ ((π β β β§ (π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ))) β (β¨π΄, π΅β©Cgrβ¨πΆ, πΆβ© β π΄ = π΅)) | ||
Theorem | axsegconlem1 28767* | Lemma for axsegcon 28777. Handle the degenerate case. (Contributed by Scott Fenton, 7-Jun-2013.) |
β’ ((π΄ = π΅ β§ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β§ (πΆ β (πΌβπ) β§ π· β (πΌβπ)))) β βπ₯ β (πΌβπ)βπ‘ β (0[,]1)(βπ β (1...π)(π΅βπ) = (((1 β π‘) Β· (π΄βπ)) + (π‘ Β· (π₯βπ))) β§ Ξ£π β (1...π)(((π΅βπ) β (π₯βπ))β2) = Ξ£π β (1...π)(((πΆβπ) β (π·βπ))β2))) | ||
Theorem | axsegconlem2 28768* | Lemma for axsegcon 28777. Show that the square of the distance between two points is a real number. (Contributed by Scott Fenton, 17-Sep-2013.) |
β’ π = Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) β β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β π β β) | ||
Theorem | axsegconlem3 28769* | Lemma for axsegcon 28777. Show that the square of the distance between two points is nonnegative. (Contributed by Scott Fenton, 17-Sep-2013.) |
β’ π = Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) β β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β 0 β€ π) | ||
Theorem | axsegconlem4 28770* | Lemma for axsegcon 28777. Show that the distance between two points is a real number. (Contributed by Scott Fenton, 17-Sep-2013.) |
β’ π = Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) β β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β (ββπ) β β) | ||
Theorem | axsegconlem5 28771* | Lemma for axsegcon 28777. Show that the distance between two points is nonnegative. (Contributed by Scott Fenton, 17-Sep-2013.) |
β’ π = Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) β β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β 0 β€ (ββπ)) | ||
Theorem | axsegconlem6 28772* | Lemma for axsegcon 28777. Show that the distance between two distinct points is positive. (Contributed by Scott Fenton, 17-Sep-2013.) |
β’ π = Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) β β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ π΄ β π΅) β 0 < (ββπ)) | ||
Theorem | axsegconlem7 28773* | Lemma for axsegcon 28777. Show that a particular ratio of distances is in the closed unit interval. (Contributed by Scott Fenton, 18-Sep-2013.) |
β’ π = Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) & β’ π = Ξ£π β (1...π)(((πΆβπ) β (π·βπ))β2) β β’ (((π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ π΄ β π΅) β§ (πΆ β (πΌβπ) β§ π· β (πΌβπ))) β ((ββπ) / ((ββπ) + (ββπ))) β (0[,]1)) | ||
Theorem | axsegconlem8 28774* | Lemma for axsegcon 28777. Show that a particular mapping generates a point. (Contributed by Scott Fenton, 18-Sep-2013.) |
β’ π = Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) & β’ π = Ξ£π β (1...π)(((πΆβπ) β (π·βπ))β2) & β’ πΉ = (π β (1...π) β¦ (((((ββπ) + (ββπ)) Β· (π΅βπ)) β ((ββπ) Β· (π΄βπ))) / (ββπ))) β β’ (((π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ π΄ β π΅) β§ (πΆ β (πΌβπ) β§ π· β (πΌβπ))) β πΉ β (πΌβπ)) | ||
Theorem | axsegconlem9 28775* | Lemma for axsegcon 28777. Show that π΅πΉ is congruent to πΆπ·. (Contributed by Scott Fenton, 19-Sep-2013.) |
β’ π = Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) & β’ π = Ξ£π β (1...π)(((πΆβπ) β (π·βπ))β2) & β’ πΉ = (π β (1...π) β¦ (((((ββπ) + (ββπ)) Β· (π΅βπ)) β ((ββπ) Β· (π΄βπ))) / (ββπ))) β β’ (((π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ π΄ β π΅) β§ (πΆ β (πΌβπ) β§ π· β (πΌβπ))) β Ξ£π β (1...π)(((π΅βπ) β (πΉβπ))β2) = Ξ£π β (1...π)(((πΆβπ) β (π·βπ))β2)) | ||
Theorem | axsegconlem10 28776* | Lemma for axsegcon 28777. Show that the scaling constant from axsegconlem7 28773 produces the betweenness condition for π΄, π΅ and πΉ. (Contributed by Scott Fenton, 21-Sep-2013.) |
β’ π = Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) & β’ π = Ξ£π β (1...π)(((πΆβπ) β (π·βπ))β2) & β’ πΉ = (π β (1...π) β¦ (((((ββπ) + (ββπ)) Β· (π΅βπ)) β ((ββπ) Β· (π΄βπ))) / (ββπ))) β β’ (((π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ π΄ β π΅) β§ (πΆ β (πΌβπ) β§ π· β (πΌβπ))) β βπ β (1...π)(π΅βπ) = (((1 β ((ββπ) / ((ββπ) + (ββπ)))) Β· (π΄βπ)) + (((ββπ) / ((ββπ) + (ββπ))) Β· (πΉβπ)))) | ||
Theorem | axsegcon 28777* | Any segment π΄π΅ can be extended to a point π₯ such that π΅π₯ is congruent to πΆπ·. Axiom A4 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 4-Jun-2013.) |
β’ ((π β β β§ (π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β§ (πΆ β (πΌβπ) β§ π· β (πΌβπ))) β βπ₯ β (πΌβπ)(π΅ Btwn β¨π΄, π₯β© β§ β¨π΅, π₯β©Cgrβ¨πΆ, π·β©)) | ||
Theorem | ax5seglem1 28778* | Lemma for ax5seg 28788. Rexpress a one congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.) |
β’ ((π β β β§ (π΄ β (πΌβπ) β§ πΆ β (πΌβπ)) β§ (π β (0[,]1) β§ βπ β (1...π)(π΅βπ) = (((1 β π) Β· (π΄βπ)) + (π Β· (πΆβπ))))) β Ξ£π β (1...π)(((π΄βπ) β (π΅βπ))β2) = ((πβ2) Β· Ξ£π β (1...π)(((π΄βπ) β (πΆβπ))β2))) | ||
Theorem | ax5seglem2 28779* | Lemma for ax5seg 28788. Rexpress another congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.) |
β’ ((π β β β§ (π΄ β (πΌβπ) β§ πΆ β (πΌβπ)) β§ (π β (0[,]1) β§ βπ β (1...π)(π΅βπ) = (((1 β π) Β· (π΄βπ)) + (π Β· (πΆβπ))))) β Ξ£π β (1...π)(((π΅βπ) β (πΆβπ))β2) = (((1 β π)β2) Β· Ξ£π β (1...π)(((π΄βπ) β (πΆβπ))β2))) | ||
Theorem | ax5seglem3a 28780 | Lemma for ax5seg 28788. (Contributed by Scott Fenton, 7-May-2015.) |
β’ (((π β β β§ (π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ)) β§ (π· β (πΌβπ) β§ πΈ β (πΌβπ) β§ πΉ β (πΌβπ))) β§ π β (1...π)) β (((π΄βπ) β (πΆβπ)) β β β§ ((π·βπ) β (πΉβπ)) β β)) | ||
Theorem | ax5seglem3 28781* | Lemma for ax5seg 28788. Combine congruences for points on a line. (Contributed by Scott Fenton, 11-Jun-2013.) |
β’ (((π β β β§ (π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ)) β§ (π· β (πΌβπ) β§ πΈ β (πΌβπ) β§ πΉ β (πΌβπ))) β§ ((π β (0[,]1) β§ π β (0[,]1)) β§ (βπ β (1...π)(π΅βπ) = (((1 β π) Β· (π΄βπ)) + (π Β· (πΆβπ))) β§ βπ β (1...π)(πΈβπ) = (((1 β π) Β· (π·βπ)) + (π Β· (πΉβπ))))) β§ (β¨π΄, π΅β©Cgrβ¨π·, πΈβ© β§ β¨π΅, πΆβ©Cgrβ¨πΈ, πΉβ©)) β Ξ£π β (1...π)(((π΄βπ) β (πΆβπ))β2) = Ξ£π β (1...π)(((π·βπ) β (πΉβπ))β2)) | ||
Theorem | ax5seglem4 28782* | Lemma for ax5seg 28788. Given two distinct points, the scaling constant in a betweenness statement is nonzero. (Contributed by Scott Fenton, 11-Jun-2013.) |
β’ (((π β β β§ (π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ))) β§ βπ β (1...π)(π΅βπ) = (((1 β π) Β· (π΄βπ)) + (π Β· (πΆβπ))) β§ π΄ β π΅) β π β 0) | ||
Theorem | ax5seglem5 28783* | Lemma for ax5seg 28788. If π΅ is between π΄ and πΆ, and π΄ is distinct from π΅, then π΄ is distinct from πΆ. (Contributed by Scott Fenton, 11-Jun-2013.) |
β’ (((π β β β§ (π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ))) β§ (π΄ β π΅ β§ π β (0[,]1) β§ βπ β (1...π)(π΅βπ) = (((1 β π) Β· (π΄βπ)) + (π Β· (πΆβπ))))) β Ξ£π β (1...π)(((π΄βπ) β (πΆβπ))β2) β 0) | ||
Theorem | ax5seglem6 28784* | Lemma for ax5seg 28788. Given two line segments that are divided into pieces, if the pieces are congruent, then the scaling constant is the same. (Contributed by Scott Fenton, 12-Jun-2013.) |
β’ (((π β β β§ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ)) β§ (π· β (πΌβπ) β§ πΈ β (πΌβπ) β§ πΉ β (πΌβπ)))) β§ (π΄ β π΅ β§ (π β (0[,]1) β§ π β (0[,]1)) β§ (βπ β (1...π)(π΅βπ) = (((1 β π) Β· (π΄βπ)) + (π Β· (πΆβπ))) β§ βπ β (1...π)(πΈβπ) = (((1 β π) Β· (π·βπ)) + (π Β· (πΉβπ))))) β§ (β¨π΄, π΅β©Cgrβ¨π·, πΈβ© β§ β¨π΅, πΆβ©Cgrβ¨πΈ, πΉβ©)) β π = π) | ||
Theorem | ax5seglem7 28785 | Lemma for ax5seg 28788. An algebraic calculation needed further down the line. (Contributed by Scott Fenton, 12-Jun-2013.) |
β’ π΄ β β & β’ π β β & β’ πΆ β β & β’ π· β β β β’ (π Β· ((πΆ β π·)β2)) = ((((((1 β π) Β· π΄) + (π Β· πΆ)) β π·)β2) + ((1 β π) Β· ((π Β· ((π΄ β πΆ)β2)) β ((π΄ β π·)β2)))) | ||
Theorem | ax5seglem8 28786 | Lemma for ax5seg 28788. Use the weak deduction theorem to eliminate the hypotheses from ax5seglem7 28785. (Contributed by Scott Fenton, 11-Jun-2013.) |
β’ (((π΄ β β β§ π β β) β§ (πΆ β β β§ π· β β)) β (π Β· ((πΆ β π·)β2)) = ((((((1 β π) Β· π΄) + (π Β· πΆ)) β π·)β2) + ((1 β π) Β· ((π Β· ((π΄ β πΆ)β2)) β ((π΄ β π·)β2))))) | ||
Theorem | ax5seglem9 28787* | Lemma for ax5seg 28788. Take the calculation in ax5seglem8 28786 and turn it into a series of measurements. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.) |
β’ (((π β β β§ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β§ (πΆ β (πΌβπ) β§ π· β (πΌβπ)))) β§ (π β (0[,]1) β§ βπ β (1...π)(π΅βπ) = (((1 β π) Β· (π΄βπ)) + (π Β· (πΆβπ))))) β (π Β· Ξ£π β (1...π)(((πΆβπ) β (π·βπ))β2)) = (Ξ£π β (1...π)(((π΅βπ) β (π·βπ))β2) + ((1 β π) Β· ((π Β· Ξ£π β (1...π)(((π΄βπ) β (πΆβπ))β2)) β Ξ£π β (1...π)(((π΄βπ) β (π·βπ))β2))))) | ||
Theorem | ax5seg 28788 | The five segment axiom. Take two triangles π΄π·πΆ and πΈπ»πΊ, a point π΅ on π΄πΆ, and a point πΉ on πΈπΊ. If all corresponding line segments except for πΆπ· and πΊπ» are congruent, then so are πΆπ· and πΊπ». Axiom A5 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 12-Jun-2013.) |
β’ (((π β β β§ π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β§ (πΆ β (πΌβπ) β§ π· β (πΌβπ) β§ πΈ β (πΌβπ)) β§ (πΉ β (πΌβπ) β§ πΊ β (πΌβπ) β§ π» β (πΌβπ))) β (((π΄ β π΅ β§ π΅ Btwn β¨π΄, πΆβ© β§ πΉ Btwn β¨πΈ, πΊβ©) β§ (β¨π΄, π΅β©Cgrβ¨πΈ, πΉβ© β§ β¨π΅, πΆβ©Cgrβ¨πΉ, πΊβ©) β§ (β¨π΄, π·β©Cgrβ¨πΈ, π»β© β§ β¨π΅, π·β©Cgrβ¨πΉ, π»β©)) β β¨πΆ, π·β©Cgrβ¨πΊ, π»β©)) | ||
Theorem | axbtwnid 28789 | Points are indivisible. That is, if π΄ lies between π΅ and π΅, then π΄ = π΅. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 3-Jun-2013.) |
β’ ((π β β β§ π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β (π΄ Btwn β¨π΅, π΅β© β π΄ = π΅)) | ||
Theorem | axpaschlem 28790* | Lemma for axpasch 28791. Set up coefficents used in the proof. (Contributed by Scott Fenton, 5-Jun-2013.) |
β’ ((π β (0[,]1) β§ π β (0[,]1)) β βπ β (0[,]1)βπ β (0[,]1)(π = ((1 β π) Β· (1 β π)) β§ π = ((1 β π) Β· (1 β π)) β§ ((1 β π) Β· π) = ((1 β π) Β· π))) | ||
Theorem | axpasch 28791* | The inner Pasch axiom. Take a triangle π΄πΆπΈ, a point π· on π΄πΆ, and a point π΅ extending πΆπΈ. Then π΄πΈ and π·π΅ intersect at some point π₯. Axiom A7 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 3-Jun-2013.) |
β’ ((π β β β§ (π΄ β (πΌβπ) β§ π΅ β (πΌβπ) β§ πΆ β (πΌβπ)) β§ (π· β (πΌβπ) β§ πΈ β (πΌβπ))) β ((π· Btwn β¨π΄, πΆβ© β§ πΈ Btwn β¨π΅, πΆβ©) β βπ₯ β (πΌβπ)(π₯ Btwn β¨π·, π΅β© β§ π₯ Btwn β¨πΈ, π΄β©))) | ||
Theorem | axlowdimlem1 28792 | Lemma for axlowdim 28811. Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013.) |
β’ ((3...π) Γ {0}):(3...π)βΆβ | ||
Theorem | axlowdimlem2 28793 | Lemma for axlowdim 28811. Show that two sets are disjoint. (Contributed by Scott Fenton, 29-Jun-2013.) |
β’ ((1...2) β© (3...π)) = β | ||
Theorem | axlowdimlem3 28794 | Lemma for axlowdim 28811. Set up a union property for an interval of integers. (Contributed by Scott Fenton, 29-Jun-2013.) |
β’ (π β (β€β₯β2) β (1...π) = ((1...2) βͺ (3...π))) | ||
Theorem | axlowdimlem4 28795 | Lemma for axlowdim 28811. Set up a particular constant function. (Contributed by Scott Fenton, 17-Apr-2013.) |
β’ π΄ β β & β’ π΅ β β β β’ {β¨1, π΄β©, β¨2, π΅β©}:(1...2)βΆβ | ||
Theorem | axlowdimlem5 28796 | Lemma for axlowdim 28811. Show that a particular union is a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) |
β’ π΄ β β & β’ π΅ β β β β’ (π β (β€β₯β2) β ({β¨1, π΄β©, β¨2, π΅β©} βͺ ((3...π) Γ {0})) β (πΌβπ)) | ||
Theorem | axlowdimlem6 28797 | Lemma for axlowdim 28811. Show that three points are non-colinear. (Contributed by Scott Fenton, 29-Jun-2013.) |
β’ π΄ = ({β¨1, 0β©, β¨2, 0β©} βͺ ((3...π) Γ {0})) & β’ π΅ = ({β¨1, 1β©, β¨2, 0β©} βͺ ((3...π) Γ {0})) & β’ πΆ = ({β¨1, 0β©, β¨2, 1β©} βͺ ((3...π) Γ {0})) β β’ (π β (β€β₯β2) β Β¬ (π΄ Btwn β¨π΅, πΆβ© β¨ π΅ Btwn β¨πΆ, π΄β© β¨ πΆ Btwn β¨π΄, π΅β©)) | ||
Theorem | axlowdimlem7 28798 | Lemma for axlowdim 28811. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) |
β’ π = ({β¨3, -1β©} βͺ (((1...π) β {3}) Γ {0})) β β’ (π β (β€β₯β3) β π β (πΌβπ)) | ||
Theorem | axlowdimlem8 28799 | Lemma for axlowdim 28811. Calculate the value of π at three. (Contributed by Scott Fenton, 21-Apr-2013.) |
β’ π = ({β¨3, -1β©} βͺ (((1...π) β {3}) Γ {0})) β β’ (πβ3) = -1 | ||
Theorem | axlowdimlem9 28800 | Lemma for axlowdim 28811. Calculate the value of π away from three. (Contributed by Scott Fenton, 21-Apr-2013.) |
β’ π = ({β¨3, -1β©} βͺ (((1...π) β {3}) Γ {0})) β β’ ((πΎ β (1...π) β§ πΎ β 3) β (πβπΎ) = 0) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |