MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isupgr Structured version   Visualization version   GIF version

Theorem isupgr 26256
Description: The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isupgr (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐸(𝑥)

Proof of Theorem isupgr
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-upgr 26254 . . 3 UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
21eleq2i 2836 . 2 (𝐺 ∈ UPGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}})
3 fveq2 6375 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4syl6eqr 2817 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 5494 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2774 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 5493 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8syl6eq 2815 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 6375 . . . . . . . 8 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isupgr.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1210, 11syl6eqr 2817 . . . . . . 7 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 4320 . . . . . 6 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413difeq1d 3889 . . . . 5 ( = 𝐺 → (𝒫 (Vtx‘) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
1514rabeqdv 3343 . . . 4 ( = 𝐺 → {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
165, 9, 15feq123d 6212 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
17 fvexd 6390 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
18 fveq2 6375 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
19 fvexd 6390 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
20 fveq2 6375 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2120adantr 472 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
22 simpr 477 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2322dmeqd 5494 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
24 pweq 4318 . . . . . . . . . 10 (𝑣 = (Vtx‘) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2524ad2antlr 718 . . . . . . . . 9 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2625difeq1d 3889 . . . . . . . 8 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2726rabeqdv 3343 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2822, 23, 27feq123d 6212 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2919, 21, 28sbcied2 3634 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3017, 18, 29sbcied2 3634 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3130cbvabv 2890 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} = { ∣ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
3216, 31elab2g 3508 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
332, 32syl5bb 274 1 (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  {cab 2751  {crab 3059  Vcvv 3350  [wsbc 3596  cdif 3729  c0 4079  𝒫 cpw 4315  {csn 4334   class class class wbr 4809  dom cdm 5277  wf 6064  cfv 6068  cle 10329  2c2 11327  chash 13321  Vtxcvtx 26165  iEdgciedg 26166  UPGraphcupgr 26252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-nul 4949
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-fv 6076  df-upgr 26254
This theorem is referenced by:  wrdupgr  26257  upgrf  26258  upgrop  26266  umgrupgr  26275  upgr1e  26285  upgrun  26290  uspgrupgr  26349  subupgr  26458  upgrres  26477  upgrres1  26484
  Copyright terms: Public domain W3C validator