MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isupgr Structured version   Visualization version   GIF version

Theorem isupgr 29018
Description: The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isupgr (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐸(𝑥)

Proof of Theorem isupgr
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-upgr 29016 . . 3 UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
21eleq2i 2821 . 2 (𝐺 ∈ UPGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}})
3 fveq2 6861 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4eqtr4di 2783 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 5872 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2739 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 5871 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8eqtrdi 2781 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 6861 . . . . . . . 8 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isupgr.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1210, 11eqtr4di 2783 . . . . . . 7 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 4583 . . . . . 6 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413difeq1d 4091 . . . . 5 ( = 𝐺 → (𝒫 (Vtx‘) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
1514rabeqdv 3424 . . . 4 ( = 𝐺 → {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
165, 9, 15feq123d 6680 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
17 fvexd 6876 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
18 fveq2 6861 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
19 fvexd 6876 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
20 fveq2 6861 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2120adantr 480 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
22 simpr 484 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2322dmeqd 5872 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
24 pweq 4580 . . . . . . . . . 10 (𝑣 = (Vtx‘) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2524ad2antlr 727 . . . . . . . . 9 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2625difeq1d 4091 . . . . . . . 8 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2726rabeqdv 3424 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2822, 23, 27feq123d 6680 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2919, 21, 28sbcied2 3801 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3017, 18, 29sbcied2 3801 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3130cbvabv 2800 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} = { ∣ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
3216, 31elab2g 3650 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
332, 32bitrid 283 1 (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  {crab 3408  Vcvv 3450  [wsbc 3756  cdif 3914  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  dom cdm 5641  wf 6510  cfv 6514  cle 11216  2c2 12248  chash 14302  Vtxcvtx 28930  iEdgciedg 28931  UPGraphcupgr 29014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-upgr 29016
This theorem is referenced by:  wrdupgr  29019  upgrf  29020  upgrop  29028  umgrupgr  29037  upgr1e  29047  upgrun  29052  uspgrupgr  29112  subupgr  29221  upgrres  29240  upgrres1  29247
  Copyright terms: Public domain W3C validator