MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isupgr Structured version   Visualization version   GIF version

Theorem isupgr 27454
Description: The property of being an undirected pseudograph. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isupgr (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐸(𝑥)

Proof of Theorem isupgr
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-upgr 27452 . . 3 UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
21eleq2i 2830 . 2 (𝐺 ∈ UPGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}})
3 fveq2 6774 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4eqtr4di 2796 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 5814 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2747 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 5813 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8eqtrdi 2794 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 6774 . . . . . . . 8 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isupgr.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1210, 11eqtr4di 2796 . . . . . . 7 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 4552 . . . . . 6 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413difeq1d 4056 . . . . 5 ( = 𝐺 → (𝒫 (Vtx‘) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
1514rabeqdv 3419 . . . 4 ( = 𝐺 → {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
165, 9, 15feq123d 6589 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
17 fvexd 6789 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
18 fveq2 6774 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
19 fvexd 6789 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
20 fveq2 6774 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2120adantr 481 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
22 simpr 485 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2322dmeqd 5814 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
24 pweq 4549 . . . . . . . . . 10 (𝑣 = (Vtx‘) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2524ad2antlr 724 . . . . . . . . 9 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2625difeq1d 4056 . . . . . . . 8 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2726rabeqdv 3419 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2822, 23, 27feq123d 6589 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2919, 21, 28sbcied2 3763 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3017, 18, 29sbcied2 3763 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3130cbvabv 2811 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} = { ∣ (iEdg‘):dom (iEdg‘)⟶{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
3216, 31elab2g 3611 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}} ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
332, 32bitrid 282 1 (𝐺𝑈 → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  {crab 3068  Vcvv 3432  [wsbc 3716  cdif 3884  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  dom cdm 5589  wf 6429  cfv 6433  cle 11010  2c2 12028  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  UPGraphcupgr 27450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-upgr 27452
This theorem is referenced by:  wrdupgr  27455  upgrf  27456  upgrop  27464  umgrupgr  27473  upgr1e  27483  upgrun  27488  uspgrupgr  27546  subupgr  27654  upgrres  27673  upgrres1  27680
  Copyright terms: Public domain W3C validator