Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-umgr | Structured version Visualization version GIF version |
Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14115 and isumgrs 27369). (Contributed by AV, 24-Nov-2020.) |
Ref | Expression |
---|---|
df-umgr | ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cumgr 27354 | . 2 class UMGraph | |
2 | ve | . . . . . . . 8 setvar 𝑒 | |
3 | 2 | cv 1538 | . . . . . . 7 class 𝑒 |
4 | 3 | cdm 5580 | . . . . . 6 class dom 𝑒 |
5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
6 | 5 | cv 1538 | . . . . . . . . 9 class 𝑥 |
7 | chash 13972 | . . . . . . . . 9 class ♯ | |
8 | 6, 7 | cfv 6418 | . . . . . . . 8 class (♯‘𝑥) |
9 | c2 11958 | . . . . . . . 8 class 2 | |
10 | 8, 9 | wceq 1539 | . . . . . . 7 wff (♯‘𝑥) = 2 |
11 | vv | . . . . . . . . . 10 setvar 𝑣 | |
12 | 11 | cv 1538 | . . . . . . . . 9 class 𝑣 |
13 | 12 | cpw 4530 | . . . . . . . 8 class 𝒫 𝑣 |
14 | c0 4253 | . . . . . . . . 9 class ∅ | |
15 | 14 | csn 4558 | . . . . . . . 8 class {∅} |
16 | 13, 15 | cdif 3880 | . . . . . . 7 class (𝒫 𝑣 ∖ {∅}) |
17 | 10, 5, 16 | crab 3067 | . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
18 | 4, 17, 3 | wf 6414 | . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
19 | vg | . . . . . . 7 setvar 𝑔 | |
20 | 19 | cv 1538 | . . . . . 6 class 𝑔 |
21 | ciedg 27270 | . . . . . 6 class iEdg | |
22 | 20, 21 | cfv 6418 | . . . . 5 class (iEdg‘𝑔) |
23 | 18, 2, 22 | wsbc 3711 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
24 | cvtx 27269 | . . . . 5 class Vtx | |
25 | 20, 24 | cfv 6418 | . . . 4 class (Vtx‘𝑔) |
26 | 23, 11, 25 | wsbc 3711 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
27 | 26, 19 | cab 2715 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
28 | 1, 27 | wceq 1539 | 1 wff UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
Colors of variables: wff setvar class |
This definition is referenced by: isumgr 27368 |
Copyright terms: Public domain | W3C validator |