| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-umgr | Structured version Visualization version GIF version | ||
| Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14512 and isumgrs 29113). (Contributed by AV, 24-Nov-2020.) |
| Ref | Expression |
|---|---|
| df-umgr | ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cumgr 29098 | . 2 class UMGraph | |
| 2 | ve | . . . . . . . 8 setvar 𝑒 | |
| 3 | 2 | cv 1539 | . . . . . . 7 class 𝑒 |
| 4 | 3 | cdm 5685 | . . . . . 6 class dom 𝑒 |
| 5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 6 | 5 | cv 1539 | . . . . . . . . 9 class 𝑥 |
| 7 | chash 14369 | . . . . . . . . 9 class ♯ | |
| 8 | 6, 7 | cfv 6561 | . . . . . . . 8 class (♯‘𝑥) |
| 9 | c2 12321 | . . . . . . . 8 class 2 | |
| 10 | 8, 9 | wceq 1540 | . . . . . . 7 wff (♯‘𝑥) = 2 |
| 11 | vv | . . . . . . . . . 10 setvar 𝑣 | |
| 12 | 11 | cv 1539 | . . . . . . . . 9 class 𝑣 |
| 13 | 12 | cpw 4600 | . . . . . . . 8 class 𝒫 𝑣 |
| 14 | c0 4333 | . . . . . . . . 9 class ∅ | |
| 15 | 14 | csn 4626 | . . . . . . . 8 class {∅} |
| 16 | 13, 15 | cdif 3948 | . . . . . . 7 class (𝒫 𝑣 ∖ {∅}) |
| 17 | 10, 5, 16 | crab 3436 | . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 18 | 4, 17, 3 | wf 6557 | . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 19 | vg | . . . . . . 7 setvar 𝑔 | |
| 20 | 19 | cv 1539 | . . . . . 6 class 𝑔 |
| 21 | ciedg 29014 | . . . . . 6 class iEdg | |
| 22 | 20, 21 | cfv 6561 | . . . . 5 class (iEdg‘𝑔) |
| 23 | 18, 2, 22 | wsbc 3788 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 24 | cvtx 29013 | . . . . 5 class Vtx | |
| 25 | 20, 24 | cfv 6561 | . . . 4 class (Vtx‘𝑔) |
| 26 | 23, 11, 25 | wsbc 3788 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 27 | 26, 19 | cab 2714 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| 28 | 1, 27 | wceq 1540 | 1 wff UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isumgr 29112 |
| Copyright terms: Public domain | W3C validator |