MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-umgr Structured version   Visualization version   GIF version

Definition df-umgr 29010
Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14438 and isumgrs 29023). (Contributed by AV, 24-Nov-2020.)
Assertion
Ref Expression
df-umgr UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
Distinct variable group:   𝑒,𝑔,𝑣,𝑥

Detailed syntax breakdown of Definition df-umgr
StepHypRef Expression
1 cumgr 29008 . 2 class UMGraph
2 ve . . . . . . . 8 setvar 𝑒
32cv 1539 . . . . . . 7 class 𝑒
43cdm 5638 . . . . . 6 class dom 𝑒
5 vx . . . . . . . . . 10 setvar 𝑥
65cv 1539 . . . . . . . . 9 class 𝑥
7 chash 14295 . . . . . . . . 9 class
86, 7cfv 6511 . . . . . . . 8 class (♯‘𝑥)
9 c2 12241 . . . . . . . 8 class 2
108, 9wceq 1540 . . . . . . 7 wff (♯‘𝑥) = 2
11 vv . . . . . . . . . 10 setvar 𝑣
1211cv 1539 . . . . . . . . 9 class 𝑣
1312cpw 4563 . . . . . . . 8 class 𝒫 𝑣
14 c0 4296 . . . . . . . . 9 class
1514csn 4589 . . . . . . . 8 class {∅}
1613, 15cdif 3911 . . . . . . 7 class (𝒫 𝑣 ∖ {∅})
1710, 5, 16crab 3405 . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
184, 17, 3wf 6507 . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
19 vg . . . . . . 7 setvar 𝑔
2019cv 1539 . . . . . 6 class 𝑔
21 ciedg 28924 . . . . . 6 class iEdg
2220, 21cfv 6511 . . . . 5 class (iEdg‘𝑔)
2318, 2, 22wsbc 3753 . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
24 cvtx 28923 . . . . 5 class Vtx
2520, 24cfv 6511 . . . 4 class (Vtx‘𝑔)
2623, 11, 25wsbc 3753 . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
2726, 19cab 2707 . 2 class {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
281, 27wceq 1540 1 wff UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
Colors of variables: wff setvar class
This definition is referenced by:  isumgr  29022
  Copyright terms: Public domain W3C validator