| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-umgr | Structured version Visualization version GIF version | ||
| Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14372 and isumgrs 29067). (Contributed by AV, 24-Nov-2020.) |
| Ref | Expression |
|---|---|
| df-umgr | ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cumgr 29052 | . 2 class UMGraph | |
| 2 | ve | . . . . . . . 8 setvar 𝑒 | |
| 3 | 2 | cv 1540 | . . . . . . 7 class 𝑒 |
| 4 | 3 | cdm 5614 | . . . . . 6 class dom 𝑒 |
| 5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 6 | 5 | cv 1540 | . . . . . . . . 9 class 𝑥 |
| 7 | chash 14229 | . . . . . . . . 9 class ♯ | |
| 8 | 6, 7 | cfv 6477 | . . . . . . . 8 class (♯‘𝑥) |
| 9 | c2 12172 | . . . . . . . 8 class 2 | |
| 10 | 8, 9 | wceq 1541 | . . . . . . 7 wff (♯‘𝑥) = 2 |
| 11 | vv | . . . . . . . . . 10 setvar 𝑣 | |
| 12 | 11 | cv 1540 | . . . . . . . . 9 class 𝑣 |
| 13 | 12 | cpw 4548 | . . . . . . . 8 class 𝒫 𝑣 |
| 14 | c0 4281 | . . . . . . . . 9 class ∅ | |
| 15 | 14 | csn 4574 | . . . . . . . 8 class {∅} |
| 16 | 13, 15 | cdif 3897 | . . . . . . 7 class (𝒫 𝑣 ∖ {∅}) |
| 17 | 10, 5, 16 | crab 3393 | . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 18 | 4, 17, 3 | wf 6473 | . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 19 | vg | . . . . . . 7 setvar 𝑔 | |
| 20 | 19 | cv 1540 | . . . . . 6 class 𝑔 |
| 21 | ciedg 28968 | . . . . . 6 class iEdg | |
| 22 | 20, 21 | cfv 6477 | . . . . 5 class (iEdg‘𝑔) |
| 23 | 18, 2, 22 | wsbc 3739 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 24 | cvtx 28967 | . . . . 5 class Vtx | |
| 25 | 20, 24 | cfv 6477 | . . . 4 class (Vtx‘𝑔) |
| 26 | 23, 11, 25 | wsbc 3739 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 27 | 26, 19 | cab 2708 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| 28 | 1, 27 | wceq 1541 | 1 wff UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isumgr 29066 |
| Copyright terms: Public domain | W3C validator |