| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-umgr | Structured version Visualization version GIF version | ||
| Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14438 and isumgrs 29023). (Contributed by AV, 24-Nov-2020.) |
| Ref | Expression |
|---|---|
| df-umgr | ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cumgr 29008 | . 2 class UMGraph | |
| 2 | ve | . . . . . . . 8 setvar 𝑒 | |
| 3 | 2 | cv 1539 | . . . . . . 7 class 𝑒 |
| 4 | 3 | cdm 5638 | . . . . . 6 class dom 𝑒 |
| 5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 6 | 5 | cv 1539 | . . . . . . . . 9 class 𝑥 |
| 7 | chash 14295 | . . . . . . . . 9 class ♯ | |
| 8 | 6, 7 | cfv 6511 | . . . . . . . 8 class (♯‘𝑥) |
| 9 | c2 12241 | . . . . . . . 8 class 2 | |
| 10 | 8, 9 | wceq 1540 | . . . . . . 7 wff (♯‘𝑥) = 2 |
| 11 | vv | . . . . . . . . . 10 setvar 𝑣 | |
| 12 | 11 | cv 1539 | . . . . . . . . 9 class 𝑣 |
| 13 | 12 | cpw 4563 | . . . . . . . 8 class 𝒫 𝑣 |
| 14 | c0 4296 | . . . . . . . . 9 class ∅ | |
| 15 | 14 | csn 4589 | . . . . . . . 8 class {∅} |
| 16 | 13, 15 | cdif 3911 | . . . . . . 7 class (𝒫 𝑣 ∖ {∅}) |
| 17 | 10, 5, 16 | crab 3405 | . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 18 | 4, 17, 3 | wf 6507 | . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 19 | vg | . . . . . . 7 setvar 𝑔 | |
| 20 | 19 | cv 1539 | . . . . . 6 class 𝑔 |
| 21 | ciedg 28924 | . . . . . 6 class iEdg | |
| 22 | 20, 21 | cfv 6511 | . . . . 5 class (iEdg‘𝑔) |
| 23 | 18, 2, 22 | wsbc 3753 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 24 | cvtx 28923 | . . . . 5 class Vtx | |
| 25 | 20, 24 | cfv 6511 | . . . 4 class (Vtx‘𝑔) |
| 26 | 23, 11, 25 | wsbc 3753 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 27 | 26, 19 | cab 2707 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| 28 | 1, 27 | wceq 1540 | 1 wff UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isumgr 29022 |
| Copyright terms: Public domain | W3C validator |