MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-umgr Structured version   Visualization version   GIF version

Definition df-umgr 29072
Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14390 and isumgrs 29085). (Contributed by AV, 24-Nov-2020.)
Assertion
Ref Expression
df-umgr UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
Distinct variable group:   𝑒,𝑔,𝑣,𝑥

Detailed syntax breakdown of Definition df-umgr
StepHypRef Expression
1 cumgr 29070 . 2 class UMGraph
2 ve . . . . . . . 8 setvar 𝑒
32cv 1540 . . . . . . 7 class 𝑒
43cdm 5621 . . . . . 6 class dom 𝑒
5 vx . . . . . . . . . 10 setvar 𝑥
65cv 1540 . . . . . . . . 9 class 𝑥
7 chash 14247 . . . . . . . . 9 class
86, 7cfv 6489 . . . . . . . 8 class (♯‘𝑥)
9 c2 12190 . . . . . . . 8 class 2
108, 9wceq 1541 . . . . . . 7 wff (♯‘𝑥) = 2
11 vv . . . . . . . . . 10 setvar 𝑣
1211cv 1540 . . . . . . . . 9 class 𝑣
1312cpw 4551 . . . . . . . 8 class 𝒫 𝑣
14 c0 4284 . . . . . . . . 9 class
1514csn 4577 . . . . . . . 8 class {∅}
1613, 15cdif 3896 . . . . . . 7 class (𝒫 𝑣 ∖ {∅})
1710, 5, 16crab 3397 . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
184, 17, 3wf 6485 . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
19 vg . . . . . . 7 setvar 𝑔
2019cv 1540 . . . . . 6 class 𝑔
21 ciedg 28986 . . . . . 6 class iEdg
2220, 21cfv 6489 . . . . 5 class (iEdg‘𝑔)
2318, 2, 22wsbc 3738 . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
24 cvtx 28985 . . . . 5 class Vtx
2520, 24cfv 6489 . . . 4 class (Vtx‘𝑔)
2623, 11, 25wsbc 3738 . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
2726, 19cab 2711 . 2 class {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
281, 27wceq 1541 1 wff UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
Colors of variables: wff setvar class
This definition is referenced by:  isumgr  29084
  Copyright terms: Public domain W3C validator