MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-umgr Structured version   Visualization version   GIF version

Definition df-umgr 29008
Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14489 and isumgrs 29021). (Contributed by AV, 24-Nov-2020.)
Assertion
Ref Expression
df-umgr UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
Distinct variable group:   𝑒,𝑔,𝑣,𝑥

Detailed syntax breakdown of Definition df-umgr
StepHypRef Expression
1 cumgr 29006 . 2 class UMGraph
2 ve . . . . . . . 8 setvar 𝑒
32cv 1539 . . . . . . 7 class 𝑒
43cdm 5654 . . . . . 6 class dom 𝑒
5 vx . . . . . . . . . 10 setvar 𝑥
65cv 1539 . . . . . . . . 9 class 𝑥
7 chash 14346 . . . . . . . . 9 class
86, 7cfv 6530 . . . . . . . 8 class (♯‘𝑥)
9 c2 12293 . . . . . . . 8 class 2
108, 9wceq 1540 . . . . . . 7 wff (♯‘𝑥) = 2
11 vv . . . . . . . . . 10 setvar 𝑣
1211cv 1539 . . . . . . . . 9 class 𝑣
1312cpw 4575 . . . . . . . 8 class 𝒫 𝑣
14 c0 4308 . . . . . . . . 9 class
1514csn 4601 . . . . . . . 8 class {∅}
1613, 15cdif 3923 . . . . . . 7 class (𝒫 𝑣 ∖ {∅})
1710, 5, 16crab 3415 . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
184, 17, 3wf 6526 . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
19 vg . . . . . . 7 setvar 𝑔
2019cv 1539 . . . . . 6 class 𝑔
21 ciedg 28922 . . . . . 6 class iEdg
2220, 21cfv 6530 . . . . 5 class (iEdg‘𝑔)
2318, 2, 22wsbc 3765 . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
24 cvtx 28921 . . . . 5 class Vtx
2520, 24cfv 6530 . . . 4 class (Vtx‘𝑔)
2623, 11, 25wsbc 3765 . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
2726, 19cab 2713 . 2 class {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
281, 27wceq 1540 1 wff UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
Colors of variables: wff setvar class
This definition is referenced by:  isumgr  29020
  Copyright terms: Public domain W3C validator