| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-umgr | Structured version Visualization version GIF version | ||
| Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14398 and isumgrs 29059). (Contributed by AV, 24-Nov-2020.) |
| Ref | Expression |
|---|---|
| df-umgr | ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cumgr 29044 | . 2 class UMGraph | |
| 2 | ve | . . . . . . . 8 setvar 𝑒 | |
| 3 | 2 | cv 1539 | . . . . . . 7 class 𝑒 |
| 4 | 3 | cdm 5623 | . . . . . 6 class dom 𝑒 |
| 5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 6 | 5 | cv 1539 | . . . . . . . . 9 class 𝑥 |
| 7 | chash 14255 | . . . . . . . . 9 class ♯ | |
| 8 | 6, 7 | cfv 6486 | . . . . . . . 8 class (♯‘𝑥) |
| 9 | c2 12201 | . . . . . . . 8 class 2 | |
| 10 | 8, 9 | wceq 1540 | . . . . . . 7 wff (♯‘𝑥) = 2 |
| 11 | vv | . . . . . . . . . 10 setvar 𝑣 | |
| 12 | 11 | cv 1539 | . . . . . . . . 9 class 𝑣 |
| 13 | 12 | cpw 4553 | . . . . . . . 8 class 𝒫 𝑣 |
| 14 | c0 4286 | . . . . . . . . 9 class ∅ | |
| 15 | 14 | csn 4579 | . . . . . . . 8 class {∅} |
| 16 | 13, 15 | cdif 3902 | . . . . . . 7 class (𝒫 𝑣 ∖ {∅}) |
| 17 | 10, 5, 16 | crab 3396 | . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 18 | 4, 17, 3 | wf 6482 | . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 19 | vg | . . . . . . 7 setvar 𝑔 | |
| 20 | 19 | cv 1539 | . . . . . 6 class 𝑔 |
| 21 | ciedg 28960 | . . . . . 6 class iEdg | |
| 22 | 20, 21 | cfv 6486 | . . . . 5 class (iEdg‘𝑔) |
| 23 | 18, 2, 22 | wsbc 3744 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 24 | cvtx 28959 | . . . . 5 class Vtx | |
| 25 | 20, 24 | cfv 6486 | . . . 4 class (Vtx‘𝑔) |
| 26 | 23, 11, 25 | wsbc 3744 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 27 | 26, 19 | cab 2707 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| 28 | 1, 27 | wceq 1540 | 1 wff UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isumgr 29058 |
| Copyright terms: Public domain | W3C validator |