Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-umgr | Structured version Visualization version GIF version |
Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14039 and isumgrs 27187). (Contributed by AV, 24-Nov-2020.) |
Ref | Expression |
---|---|
df-umgr | ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cumgr 27172 | . 2 class UMGraph | |
2 | ve | . . . . . . . 8 setvar 𝑒 | |
3 | 2 | cv 1542 | . . . . . . 7 class 𝑒 |
4 | 3 | cdm 5551 | . . . . . 6 class dom 𝑒 |
5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
6 | 5 | cv 1542 | . . . . . . . . 9 class 𝑥 |
7 | chash 13896 | . . . . . . . . 9 class ♯ | |
8 | 6, 7 | cfv 6380 | . . . . . . . 8 class (♯‘𝑥) |
9 | c2 11885 | . . . . . . . 8 class 2 | |
10 | 8, 9 | wceq 1543 | . . . . . . 7 wff (♯‘𝑥) = 2 |
11 | vv | . . . . . . . . . 10 setvar 𝑣 | |
12 | 11 | cv 1542 | . . . . . . . . 9 class 𝑣 |
13 | 12 | cpw 4513 | . . . . . . . 8 class 𝒫 𝑣 |
14 | c0 4237 | . . . . . . . . 9 class ∅ | |
15 | 14 | csn 4541 | . . . . . . . 8 class {∅} |
16 | 13, 15 | cdif 3863 | . . . . . . 7 class (𝒫 𝑣 ∖ {∅}) |
17 | 10, 5, 16 | crab 3065 | . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
18 | 4, 17, 3 | wf 6376 | . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
19 | vg | . . . . . . 7 setvar 𝑔 | |
20 | 19 | cv 1542 | . . . . . 6 class 𝑔 |
21 | ciedg 27088 | . . . . . 6 class iEdg | |
22 | 20, 21 | cfv 6380 | . . . . 5 class (iEdg‘𝑔) |
23 | 18, 2, 22 | wsbc 3694 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
24 | cvtx 27087 | . . . . 5 class Vtx | |
25 | 20, 24 | cfv 6380 | . . . 4 class (Vtx‘𝑔) |
26 | 23, 11, 25 | wsbc 3694 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
27 | 26, 19 | cab 2714 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
28 | 1, 27 | wceq 1543 | 1 wff UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
Colors of variables: wff setvar class |
This definition is referenced by: isumgr 27186 |
Copyright terms: Public domain | W3C validator |