MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-umgr Structured version   Visualization version   GIF version

Definition df-umgr 27462
Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14196 and isumgrs 27475). (Contributed by AV, 24-Nov-2020.)
Assertion
Ref Expression
df-umgr UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
Distinct variable group:   𝑒,𝑔,𝑣,𝑥

Detailed syntax breakdown of Definition df-umgr
StepHypRef Expression
1 cumgr 27460 . 2 class UMGraph
2 ve . . . . . . . 8 setvar 𝑒
32cv 1538 . . . . . . 7 class 𝑒
43cdm 5590 . . . . . 6 class dom 𝑒
5 vx . . . . . . . . . 10 setvar 𝑥
65cv 1538 . . . . . . . . 9 class 𝑥
7 chash 14053 . . . . . . . . 9 class
86, 7cfv 6437 . . . . . . . 8 class (♯‘𝑥)
9 c2 12037 . . . . . . . 8 class 2
108, 9wceq 1539 . . . . . . 7 wff (♯‘𝑥) = 2
11 vv . . . . . . . . . 10 setvar 𝑣
1211cv 1538 . . . . . . . . 9 class 𝑣
1312cpw 4534 . . . . . . . 8 class 𝒫 𝑣
14 c0 4257 . . . . . . . . 9 class
1514csn 4562 . . . . . . . 8 class {∅}
1613, 15cdif 3885 . . . . . . 7 class (𝒫 𝑣 ∖ {∅})
1710, 5, 16crab 3069 . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
184, 17, 3wf 6433 . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
19 vg . . . . . . 7 setvar 𝑔
2019cv 1538 . . . . . 6 class 𝑔
21 ciedg 27376 . . . . . 6 class iEdg
2220, 21cfv 6437 . . . . 5 class (iEdg‘𝑔)
2318, 2, 22wsbc 3717 . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
24 cvtx 27375 . . . . 5 class Vtx
2520, 24cfv 6437 . . . 4 class (Vtx‘𝑔)
2623, 11, 25wsbc 3717 . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}
2726, 19cab 2716 . 2 class {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
281, 27wceq 1539 1 wff UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
Colors of variables: wff setvar class
This definition is referenced by:  isumgr  27474
  Copyright terms: Public domain W3C validator