![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-umgr | Structured version Visualization version GIF version |
Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14522 and isumgrs 29131). (Contributed by AV, 24-Nov-2020.) |
Ref | Expression |
---|---|
df-umgr | ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cumgr 29116 | . 2 class UMGraph | |
2 | ve | . . . . . . . 8 setvar 𝑒 | |
3 | 2 | cv 1536 | . . . . . . 7 class 𝑒 |
4 | 3 | cdm 5700 | . . . . . 6 class dom 𝑒 |
5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
6 | 5 | cv 1536 | . . . . . . . . 9 class 𝑥 |
7 | chash 14379 | . . . . . . . . 9 class ♯ | |
8 | 6, 7 | cfv 6573 | . . . . . . . 8 class (♯‘𝑥) |
9 | c2 12348 | . . . . . . . 8 class 2 | |
10 | 8, 9 | wceq 1537 | . . . . . . 7 wff (♯‘𝑥) = 2 |
11 | vv | . . . . . . . . . 10 setvar 𝑣 | |
12 | 11 | cv 1536 | . . . . . . . . 9 class 𝑣 |
13 | 12 | cpw 4622 | . . . . . . . 8 class 𝒫 𝑣 |
14 | c0 4352 | . . . . . . . . 9 class ∅ | |
15 | 14 | csn 4648 | . . . . . . . 8 class {∅} |
16 | 13, 15 | cdif 3973 | . . . . . . 7 class (𝒫 𝑣 ∖ {∅}) |
17 | 10, 5, 16 | crab 3443 | . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
18 | 4, 17, 3 | wf 6569 | . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
19 | vg | . . . . . . 7 setvar 𝑔 | |
20 | 19 | cv 1536 | . . . . . 6 class 𝑔 |
21 | ciedg 29032 | . . . . . 6 class iEdg | |
22 | 20, 21 | cfv 6573 | . . . . 5 class (iEdg‘𝑔) |
23 | 18, 2, 22 | wsbc 3804 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
24 | cvtx 29031 | . . . . 5 class Vtx | |
25 | 20, 24 | cfv 6573 | . . . 4 class (Vtx‘𝑔) |
26 | 23, 11, 25 | wsbc 3804 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
27 | 26, 19 | cab 2717 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
28 | 1, 27 | wceq 1537 | 1 wff UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
Colors of variables: wff setvar class |
This definition is referenced by: isumgr 29130 |
Copyright terms: Public domain | W3C validator |