| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-umgr | Structured version Visualization version GIF version | ||
| Description: Define the class of all undirected multigraphs. An (undirected) multigraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to a pseudograph, a multigraph has no loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges." To provide uniform definitions for all kinds of graphs, 𝑥 ∈ (𝒫 𝑣 ∖ {∅}) is used as restriction of the class abstraction, although 𝑥 ∈ 𝒫 𝑣 would be sufficient (see prprrab 14489 and isumgrs 29021). (Contributed by AV, 24-Nov-2020.) |
| Ref | Expression |
|---|---|
| df-umgr | ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cumgr 29006 | . 2 class UMGraph | |
| 2 | ve | . . . . . . . 8 setvar 𝑒 | |
| 3 | 2 | cv 1539 | . . . . . . 7 class 𝑒 |
| 4 | 3 | cdm 5654 | . . . . . 6 class dom 𝑒 |
| 5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 6 | 5 | cv 1539 | . . . . . . . . 9 class 𝑥 |
| 7 | chash 14346 | . . . . . . . . 9 class ♯ | |
| 8 | 6, 7 | cfv 6530 | . . . . . . . 8 class (♯‘𝑥) |
| 9 | c2 12293 | . . . . . . . 8 class 2 | |
| 10 | 8, 9 | wceq 1540 | . . . . . . 7 wff (♯‘𝑥) = 2 |
| 11 | vv | . . . . . . . . . 10 setvar 𝑣 | |
| 12 | 11 | cv 1539 | . . . . . . . . 9 class 𝑣 |
| 13 | 12 | cpw 4575 | . . . . . . . 8 class 𝒫 𝑣 |
| 14 | c0 4308 | . . . . . . . . 9 class ∅ | |
| 15 | 14 | csn 4601 | . . . . . . . 8 class {∅} |
| 16 | 13, 15 | cdif 3923 | . . . . . . 7 class (𝒫 𝑣 ∖ {∅}) |
| 17 | 10, 5, 16 | crab 3415 | . . . . . 6 class {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 18 | 4, 17, 3 | wf 6526 | . . . . 5 wff 𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 19 | vg | . . . . . . 7 setvar 𝑔 | |
| 20 | 19 | cv 1539 | . . . . . 6 class 𝑔 |
| 21 | ciedg 28922 | . . . . . 6 class iEdg | |
| 22 | 20, 21 | cfv 6530 | . . . . 5 class (iEdg‘𝑔) |
| 23 | 18, 2, 22 | wsbc 3765 | . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 24 | cvtx 28921 | . . . . 5 class Vtx | |
| 25 | 20, 24 | cfv 6530 | . . . 4 class (Vtx‘𝑔) |
| 26 | 23, 11, 25 | wsbc 3765 | . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 27 | 26, 19 | cab 2713 | . 2 class {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| 28 | 1, 27 | wceq 1540 | 1 wff UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isumgr 29020 |
| Copyright terms: Public domain | W3C validator |