Detailed syntax breakdown of Definition df-vdwmc
| Step | Hyp | Ref
| Expression |
| 1 | | cvdwm 17004 |
. 2
class
MonoAP |
| 2 | | vk |
. . . . . . . . 9
setvar 𝑘 |
| 3 | 2 | cv 1539 |
. . . . . . . 8
class 𝑘 |
| 4 | | cvdwa 17003 |
. . . . . . . 8
class
AP |
| 5 | 3, 4 | cfv 6561 |
. . . . . . 7
class
(AP‘𝑘) |
| 6 | 5 | crn 5686 |
. . . . . 6
class ran
(AP‘𝑘) |
| 7 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 8 | 7 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 9 | 8 | ccnv 5684 |
. . . . . . . 8
class ◡𝑓 |
| 10 | | vc |
. . . . . . . . . 10
setvar 𝑐 |
| 11 | 10 | cv 1539 |
. . . . . . . . 9
class 𝑐 |
| 12 | 11 | csn 4626 |
. . . . . . . 8
class {𝑐} |
| 13 | 9, 12 | cima 5688 |
. . . . . . 7
class (◡𝑓 “ {𝑐}) |
| 14 | 13 | cpw 4600 |
. . . . . 6
class 𝒫
(◡𝑓 “ {𝑐}) |
| 15 | 6, 14 | cin 3950 |
. . . . 5
class (ran
(AP‘𝑘) ∩
𝒫 (◡𝑓 “ {𝑐})) |
| 16 | | c0 4333 |
. . . . 5
class
∅ |
| 17 | 15, 16 | wne 2940 |
. . . 4
wff (ran
(AP‘𝑘) ∩
𝒫 (◡𝑓 “ {𝑐})) ≠ ∅ |
| 18 | 17, 10 | wex 1779 |
. . 3
wff
∃𝑐(ran
(AP‘𝑘) ∩
𝒫 (◡𝑓 “ {𝑐})) ≠ ∅ |
| 19 | 18, 2, 7 | copab 5205 |
. 2
class
{〈𝑘, 𝑓〉 ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (◡𝑓 “ {𝑐})) ≠ ∅} |
| 20 | 1, 19 | wceq 1540 |
1
wff MonoAP =
{〈𝑘, 𝑓〉 ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (◡𝑓 “ {𝑐})) ≠ ∅} |