Step | Hyp | Ref
| Expression |
1 | | vdwmc.2 |
. . 3
β’ (π β πΎ β
β0) |
2 | | vdwmc.3 |
. . . 4
β’ (π β πΉ:πβΆπ
) |
3 | | vdwmc.1 |
. . . 4
β’ π β V |
4 | | fex 7225 |
. . . 4
β’ ((πΉ:πβΆπ
β§ π β V) β πΉ β V) |
5 | 2, 3, 4 | sylancl 587 |
. . 3
β’ (π β πΉ β V) |
6 | | fveq2 6889 |
. . . . . . . 8
β’ (π = πΎ β (APβπ) = (APβπΎ)) |
7 | 6 | rneqd 5936 |
. . . . . . 7
β’ (π = πΎ β ran (APβπ) = ran (APβπΎ)) |
8 | | cnveq 5872 |
. . . . . . . . 9
β’ (π = πΉ β β‘π = β‘πΉ) |
9 | 8 | imaeq1d 6057 |
. . . . . . . 8
β’ (π = πΉ β (β‘π β {π}) = (β‘πΉ β {π})) |
10 | 9 | pweqd 4619 |
. . . . . . 7
β’ (π = πΉ β π« (β‘π β {π}) = π« (β‘πΉ β {π})) |
11 | 7, 10 | ineqan12d 4214 |
. . . . . 6
β’ ((π = πΎ β§ π = πΉ) β (ran (APβπ) β© π« (β‘π β {π})) = (ran (APβπΎ) β© π« (β‘πΉ β {π}))) |
12 | 11 | neeq1d 3001 |
. . . . 5
β’ ((π = πΎ β§ π = πΉ) β ((ran (APβπ) β© π« (β‘π β {π})) β β
β (ran (APβπΎ) β© π« (β‘πΉ β {π})) β β
)) |
13 | 12 | exbidv 1925 |
. . . 4
β’ ((π = πΎ β§ π = πΉ) β (βπ(ran (APβπ) β© π« (β‘π β {π})) β β
β βπ(ran (APβπΎ) β© π« (β‘πΉ β {π})) β β
)) |
14 | | df-vdwmc 16899 |
. . . 4
β’ MonoAP =
{β¨π, πβ© β£ βπ(ran (APβπ) β© π« (β‘π β {π})) β β
} |
15 | 13, 14 | brabga 5534 |
. . 3
β’ ((πΎ β β0
β§ πΉ β V) β
(πΎ MonoAP πΉ β βπ(ran (APβπΎ) β© π« (β‘πΉ β {π})) β β
)) |
16 | 1, 5, 15 | syl2anc 585 |
. 2
β’ (π β (πΎ MonoAP πΉ β βπ(ran (APβπΎ) β© π« (β‘πΉ β {π})) β β
)) |
17 | | vdwapf 16902 |
. . . . 5
β’ (πΎ β β0
β (APβπΎ):(β Γ β)βΆπ«
β) |
18 | | ffn 6715 |
. . . . 5
β’
((APβπΎ):(β Γ β)βΆπ«
β β (APβπΎ)
Fn (β Γ β)) |
19 | | velpw 4607 |
. . . . . . 7
β’ (π§ β π« (β‘πΉ β {π}) β π§ β (β‘πΉ β {π})) |
20 | | sseq1 4007 |
. . . . . . 7
β’ (π§ = ((APβπΎ)βπ€) β (π§ β (β‘πΉ β {π}) β ((APβπΎ)βπ€) β (β‘πΉ β {π}))) |
21 | 19, 20 | bitrid 283 |
. . . . . 6
β’ (π§ = ((APβπΎ)βπ€) β (π§ β π« (β‘πΉ β {π}) β ((APβπΎ)βπ€) β (β‘πΉ β {π}))) |
22 | 21 | rexrn 7086 |
. . . . 5
β’
((APβπΎ) Fn
(β Γ β) β (βπ§ β ran (APβπΎ)π§ β π« (β‘πΉ β {π}) β βπ€ β (β Γ
β)((APβπΎ)βπ€) β (β‘πΉ β {π}))) |
23 | 1, 17, 18, 22 | 4syl 19 |
. . . 4
β’ (π β (βπ§ β ran (APβπΎ)π§ β π« (β‘πΉ β {π}) β βπ€ β (β Γ
β)((APβπΎ)βπ€) β (β‘πΉ β {π}))) |
24 | | elin 3964 |
. . . . . 6
β’ (π§ β (ran (APβπΎ) β© π« (β‘πΉ β {π})) β (π§ β ran (APβπΎ) β§ π§ β π« (β‘πΉ β {π}))) |
25 | 24 | exbii 1851 |
. . . . 5
β’
(βπ§ π§ β (ran (APβπΎ) β© π« (β‘πΉ β {π})) β βπ§(π§ β ran (APβπΎ) β§ π§ β π« (β‘πΉ β {π}))) |
26 | | n0 4346 |
. . . . 5
β’ ((ran
(APβπΎ) β©
π« (β‘πΉ β {π})) β β
β βπ§ π§ β (ran (APβπΎ) β© π« (β‘πΉ β {π}))) |
27 | | df-rex 3072 |
. . . . 5
β’
(βπ§ β ran
(APβπΎ)π§ β π« (β‘πΉ β {π}) β βπ§(π§ β ran (APβπΎ) β§ π§ β π« (β‘πΉ β {π}))) |
28 | 25, 26, 27 | 3bitr4ri 304 |
. . . 4
β’
(βπ§ β ran
(APβπΎ)π§ β π« (β‘πΉ β {π}) β (ran (APβπΎ) β© π« (β‘πΉ β {π})) β β
) |
29 | | fveq2 6889 |
. . . . . . 7
β’ (π€ = β¨π, πβ© β ((APβπΎ)βπ€) = ((APβπΎ)ββ¨π, πβ©)) |
30 | | df-ov 7409 |
. . . . . . 7
β’ (π(APβπΎ)π) = ((APβπΎ)ββ¨π, πβ©) |
31 | 29, 30 | eqtr4di 2791 |
. . . . . 6
β’ (π€ = β¨π, πβ© β ((APβπΎ)βπ€) = (π(APβπΎ)π)) |
32 | 31 | sseq1d 4013 |
. . . . 5
β’ (π€ = β¨π, πβ© β (((APβπΎ)βπ€) β (β‘πΉ β {π}) β (π(APβπΎ)π) β (β‘πΉ β {π}))) |
33 | 32 | rexxp 5841 |
. . . 4
β’
(βπ€ β
(β Γ β)((APβπΎ)βπ€) β (β‘πΉ β {π}) β βπ β β βπ β β (π(APβπΎ)π) β (β‘πΉ β {π})) |
34 | 23, 28, 33 | 3bitr3g 313 |
. . 3
β’ (π β ((ran (APβπΎ) β© π« (β‘πΉ β {π})) β β
β βπ β β βπ β β (π(APβπΎ)π) β (β‘πΉ β {π}))) |
35 | 34 | exbidv 1925 |
. 2
β’ (π β (βπ(ran (APβπΎ) β© π« (β‘πΉ β {π})) β β
β βπβπ β β βπ β β (π(APβπΎ)π) β (β‘πΉ β {π}))) |
36 | 16, 35 | bitrd 279 |
1
β’ (π β (πΎ MonoAP πΉ β βπβπ β β βπ β β (π(APβπΎ)π) β (β‘πΉ β {π}))) |