Step | Hyp | Ref
| Expression |
1 | | vdwmc.2 |
. . 3
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
2 | | vdwmc.3 |
. . . 4
⊢ (𝜑 → 𝐹:𝑋⟶𝑅) |
3 | | vdwmc.1 |
. . . 4
⊢ 𝑋 ∈ V |
4 | | fex 7084 |
. . . 4
⊢ ((𝐹:𝑋⟶𝑅 ∧ 𝑋 ∈ V) → 𝐹 ∈ V) |
5 | 2, 3, 4 | sylancl 585 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
6 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (AP‘𝑘) = (AP‘𝐾)) |
7 | 6 | rneqd 5836 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → ran (AP‘𝑘) = ran (AP‘𝐾)) |
8 | | cnveq 5771 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) |
9 | 8 | imaeq1d 5957 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (◡𝑓 “ {𝑐}) = (◡𝐹 “ {𝑐})) |
10 | 9 | pweqd 4549 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → 𝒫 (◡𝑓 “ {𝑐}) = 𝒫 (◡𝐹 “ {𝑐})) |
11 | 7, 10 | ineqan12d 4145 |
. . . . . 6
⊢ ((𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (ran (AP‘𝑘) ∩ 𝒫 (◡𝑓 “ {𝑐})) = (ran (AP‘𝐾) ∩ 𝒫 (◡𝐹 “ {𝑐}))) |
12 | 11 | neeq1d 3002 |
. . . . 5
⊢ ((𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → ((ran (AP‘𝑘) ∩ 𝒫 (◡𝑓 “ {𝑐})) ≠ ∅ ↔ (ran (AP‘𝐾) ∩ 𝒫 (◡𝐹 “ {𝑐})) ≠ ∅)) |
13 | 12 | exbidv 1925 |
. . . 4
⊢ ((𝑘 = 𝐾 ∧ 𝑓 = 𝐹) → (∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (◡𝑓 “ {𝑐})) ≠ ∅ ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (◡𝐹 “ {𝑐})) ≠ ∅)) |
14 | | df-vdwmc 16598 |
. . . 4
⊢ MonoAP =
{〈𝑘, 𝑓〉 ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (◡𝑓 “ {𝑐})) ≠ ∅} |
15 | 13, 14 | brabga 5440 |
. . 3
⊢ ((𝐾 ∈ ℕ0
∧ 𝐹 ∈ V) →
(𝐾 MonoAP 𝐹 ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (◡𝐹 “ {𝑐})) ≠ ∅)) |
16 | 1, 5, 15 | syl2anc 583 |
. 2
⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (◡𝐹 “ {𝑐})) ≠ ∅)) |
17 | | vdwapf 16601 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ (AP‘𝐾):(ℕ × ℕ)⟶𝒫
ℕ) |
18 | | ffn 6584 |
. . . . 5
⊢
((AP‘𝐾):(ℕ × ℕ)⟶𝒫
ℕ → (AP‘𝐾)
Fn (ℕ × ℕ)) |
19 | | velpw 4535 |
. . . . . . 7
⊢ (𝑧 ∈ 𝒫 (◡𝐹 “ {𝑐}) ↔ 𝑧 ⊆ (◡𝐹 “ {𝑐})) |
20 | | sseq1 3942 |
. . . . . . 7
⊢ (𝑧 = ((AP‘𝐾)‘𝑤) → (𝑧 ⊆ (◡𝐹 “ {𝑐}) ↔ ((AP‘𝐾)‘𝑤) ⊆ (◡𝐹 “ {𝑐}))) |
21 | 19, 20 | syl5bb 282 |
. . . . . 6
⊢ (𝑧 = ((AP‘𝐾)‘𝑤) → (𝑧 ∈ 𝒫 (◡𝐹 “ {𝑐}) ↔ ((AP‘𝐾)‘𝑤) ⊆ (◡𝐹 “ {𝑐}))) |
22 | 21 | rexrn 6945 |
. . . . 5
⊢
((AP‘𝐾) Fn
(ℕ × ℕ) → (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (◡𝐹 “ {𝑐}) ↔ ∃𝑤 ∈ (ℕ ×
ℕ)((AP‘𝐾)‘𝑤) ⊆ (◡𝐹 “ {𝑐}))) |
23 | 1, 17, 18, 22 | 4syl 19 |
. . . 4
⊢ (𝜑 → (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (◡𝐹 “ {𝑐}) ↔ ∃𝑤 ∈ (ℕ ×
ℕ)((AP‘𝐾)‘𝑤) ⊆ (◡𝐹 “ {𝑐}))) |
24 | | elin 3899 |
. . . . . 6
⊢ (𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (◡𝐹 “ {𝑐})) ↔ (𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (◡𝐹 “ {𝑐}))) |
25 | 24 | exbii 1851 |
. . . . 5
⊢
(∃𝑧 𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (◡𝐹 “ {𝑐})) ↔ ∃𝑧(𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (◡𝐹 “ {𝑐}))) |
26 | | n0 4277 |
. . . . 5
⊢ ((ran
(AP‘𝐾) ∩
𝒫 (◡𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (◡𝐹 “ {𝑐}))) |
27 | | df-rex 3069 |
. . . . 5
⊢
(∃𝑧 ∈ ran
(AP‘𝐾)𝑧 ∈ 𝒫 (◡𝐹 “ {𝑐}) ↔ ∃𝑧(𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (◡𝐹 “ {𝑐}))) |
28 | 25, 26, 27 | 3bitr4ri 303 |
. . . 4
⊢
(∃𝑧 ∈ ran
(AP‘𝐾)𝑧 ∈ 𝒫 (◡𝐹 “ {𝑐}) ↔ (ran (AP‘𝐾) ∩ 𝒫 (◡𝐹 “ {𝑐})) ≠ ∅) |
29 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑤 = 〈𝑎, 𝑑〉 → ((AP‘𝐾)‘𝑤) = ((AP‘𝐾)‘〈𝑎, 𝑑〉)) |
30 | | df-ov 7258 |
. . . . . . 7
⊢ (𝑎(AP‘𝐾)𝑑) = ((AP‘𝐾)‘〈𝑎, 𝑑〉) |
31 | 29, 30 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑤 = 〈𝑎, 𝑑〉 → ((AP‘𝐾)‘𝑤) = (𝑎(AP‘𝐾)𝑑)) |
32 | 31 | sseq1d 3948 |
. . . . 5
⊢ (𝑤 = 〈𝑎, 𝑑〉 → (((AP‘𝐾)‘𝑤) ⊆ (◡𝐹 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
33 | 32 | rexxp 5740 |
. . . 4
⊢
(∃𝑤 ∈
(ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
34 | 23, 28, 33 | 3bitr3g 312 |
. . 3
⊢ (𝜑 → ((ran (AP‘𝐾) ∩ 𝒫 (◡𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
35 | 34 | exbidv 1925 |
. 2
⊢ (𝜑 → (∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (◡𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
36 | 16, 35 | bitrd 278 |
1
⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |