MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwmc Structured version   Visualization version   GIF version

Theorem vdwmc 16949
Description: The predicate " The 𝑅, 𝑁-coloring 𝐹 contains a monochromatic AP of length 𝐾". (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwmc.1 𝑋 ∈ V
vdwmc.2 (𝜑𝐾 ∈ ℕ0)
vdwmc.3 (𝜑𝐹:𝑋𝑅)
Assertion
Ref Expression
vdwmc (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐹   𝐾,𝑎,𝑐,𝑑   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑎,𝑑)   𝑅(𝑎,𝑐,𝑑)   𝑋(𝑎,𝑐,𝑑)

Proof of Theorem vdwmc
Dummy variables 𝑓 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwmc.2 . . 3 (𝜑𝐾 ∈ ℕ0)
2 vdwmc.3 . . . 4 (𝜑𝐹:𝑋𝑅)
3 vdwmc.1 . . . 4 𝑋 ∈ V
4 fex 7200 . . . 4 ((𝐹:𝑋𝑅𝑋 ∈ V) → 𝐹 ∈ V)
52, 3, 4sylancl 586 . . 3 (𝜑𝐹 ∈ V)
6 fveq2 6858 . . . . . . . 8 (𝑘 = 𝐾 → (AP‘𝑘) = (AP‘𝐾))
76rneqd 5902 . . . . . . 7 (𝑘 = 𝐾 → ran (AP‘𝑘) = ran (AP‘𝐾))
8 cnveq 5837 . . . . . . . . 9 (𝑓 = 𝐹𝑓 = 𝐹)
98imaeq1d 6030 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 “ {𝑐}) = (𝐹 “ {𝑐}))
109pweqd 4580 . . . . . . 7 (𝑓 = 𝐹 → 𝒫 (𝑓 “ {𝑐}) = 𝒫 (𝐹 “ {𝑐}))
117, 10ineqan12d 4185 . . . . . 6 ((𝑘 = 𝐾𝑓 = 𝐹) → (ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) = (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})))
1211neeq1d 2984 . . . . 5 ((𝑘 = 𝐾𝑓 = 𝐹) → ((ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅ ↔ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
1312exbidv 1921 . . . 4 ((𝑘 = 𝐾𝑓 = 𝐹) → (∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅ ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
14 df-vdwmc 16940 . . . 4 MonoAP = {⟨𝑘, 𝑓⟩ ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅}
1513, 14brabga 5494 . . 3 ((𝐾 ∈ ℕ0𝐹 ∈ V) → (𝐾 MonoAP 𝐹 ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
161, 5, 15syl2anc 584 . 2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
17 vdwapf 16943 . . . . 5 (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)
18 ffn 6688 . . . . 5 ((AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ → (AP‘𝐾) Fn (ℕ × ℕ))
19 velpw 4568 . . . . . . 7 (𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ 𝑧 ⊆ (𝐹 “ {𝑐}))
20 sseq1 3972 . . . . . . 7 (𝑧 = ((AP‘𝐾)‘𝑤) → (𝑧 ⊆ (𝐹 “ {𝑐}) ↔ ((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
2119, 20bitrid 283 . . . . . 6 (𝑧 = ((AP‘𝐾)‘𝑤) → (𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
2221rexrn 7059 . . . . 5 ((AP‘𝐾) Fn (ℕ × ℕ) → (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
231, 17, 18, 224syl 19 . . . 4 (𝜑 → (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
24 elin 3930 . . . . . 6 (𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ↔ (𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
2524exbii 1848 . . . . 5 (∃𝑧 𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ↔ ∃𝑧(𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
26 n0 4316 . . . . 5 ((ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})))
27 df-rex 3054 . . . . 5 (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑧(𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
2825, 26, 273bitr4ri 304 . . . 4 (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅)
29 fveq2 6858 . . . . . . 7 (𝑤 = ⟨𝑎, 𝑑⟩ → ((AP‘𝐾)‘𝑤) = ((AP‘𝐾)‘⟨𝑎, 𝑑⟩))
30 df-ov 7390 . . . . . . 7 (𝑎(AP‘𝐾)𝑑) = ((AP‘𝐾)‘⟨𝑎, 𝑑⟩)
3129, 30eqtr4di 2782 . . . . . 6 (𝑤 = ⟨𝑎, 𝑑⟩ → ((AP‘𝐾)‘𝑤) = (𝑎(AP‘𝐾)𝑑))
3231sseq1d 3978 . . . . 5 (𝑤 = ⟨𝑎, 𝑑⟩ → (((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3332rexxp 5806 . . . 4 (∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
3423, 28, 333bitr3g 313 . . 3 (𝜑 → ((ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3534exbidv 1921 . 2 (𝜑 → (∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3616, 35bitrd 279 1 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589  cop 4595   class class class wbr 5107   × cxp 5636  ccnv 5637  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cn 12186  0cn0 12442  APcvdwa 16936   MonoAP cvdwm 16937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-vdwap 16939  df-vdwmc 16940
This theorem is referenced by:  vdwmc2  16950  vdwlem1  16952  vdwlem2  16953  vdwlem9  16960  vdwlem10  16961  vdwlem12  16963  vdwlem13  16964
  Copyright terms: Public domain W3C validator