MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwmc Structured version   Visualization version   GIF version

Theorem vdwmc 16317
Description: The predicate " The 𝑅, 𝑁-coloring 𝐹 contains a monochromatic AP of length 𝐾". (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwmc.1 𝑋 ∈ V
vdwmc.2 (𝜑𝐾 ∈ ℕ0)
vdwmc.3 (𝜑𝐹:𝑋𝑅)
Assertion
Ref Expression
vdwmc (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐹   𝐾,𝑎,𝑐,𝑑   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑎,𝑑)   𝑅(𝑎,𝑐,𝑑)   𝑋(𝑎,𝑐,𝑑)

Proof of Theorem vdwmc
Dummy variables 𝑓 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwmc.2 . . 3 (𝜑𝐾 ∈ ℕ0)
2 vdwmc.3 . . . 4 (𝜑𝐹:𝑋𝑅)
3 vdwmc.1 . . . 4 𝑋 ∈ V
4 fex 6992 . . . 4 ((𝐹:𝑋𝑅𝑋 ∈ V) → 𝐹 ∈ V)
52, 3, 4sylancl 588 . . 3 (𝜑𝐹 ∈ V)
6 fveq2 6673 . . . . . . . 8 (𝑘 = 𝐾 → (AP‘𝑘) = (AP‘𝐾))
76rneqd 5811 . . . . . . 7 (𝑘 = 𝐾 → ran (AP‘𝑘) = ran (AP‘𝐾))
8 cnveq 5747 . . . . . . . . 9 (𝑓 = 𝐹𝑓 = 𝐹)
98imaeq1d 5931 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 “ {𝑐}) = (𝐹 “ {𝑐}))
109pweqd 4561 . . . . . . 7 (𝑓 = 𝐹 → 𝒫 (𝑓 “ {𝑐}) = 𝒫 (𝐹 “ {𝑐}))
117, 10ineqan12d 4194 . . . . . 6 ((𝑘 = 𝐾𝑓 = 𝐹) → (ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) = (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})))
1211neeq1d 3078 . . . . 5 ((𝑘 = 𝐾𝑓 = 𝐹) → ((ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅ ↔ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
1312exbidv 1921 . . . 4 ((𝑘 = 𝐾𝑓 = 𝐹) → (∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅ ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
14 df-vdwmc 16308 . . . 4 MonoAP = {⟨𝑘, 𝑓⟩ ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅}
1513, 14brabga 5424 . . 3 ((𝐾 ∈ ℕ0𝐹 ∈ V) → (𝐾 MonoAP 𝐹 ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
161, 5, 15syl2anc 586 . 2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
17 vdwapf 16311 . . . . 5 (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)
18 ffn 6517 . . . . 5 ((AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ → (AP‘𝐾) Fn (ℕ × ℕ))
19 velpw 4547 . . . . . . 7 (𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ 𝑧 ⊆ (𝐹 “ {𝑐}))
20 sseq1 3995 . . . . . . 7 (𝑧 = ((AP‘𝐾)‘𝑤) → (𝑧 ⊆ (𝐹 “ {𝑐}) ↔ ((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
2119, 20syl5bb 285 . . . . . 6 (𝑧 = ((AP‘𝐾)‘𝑤) → (𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
2221rexrn 6856 . . . . 5 ((AP‘𝐾) Fn (ℕ × ℕ) → (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
231, 17, 18, 224syl 19 . . . 4 (𝜑 → (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
24 elin 4172 . . . . . 6 (𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ↔ (𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
2524exbii 1847 . . . . 5 (∃𝑧 𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ↔ ∃𝑧(𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
26 n0 4313 . . . . 5 ((ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})))
27 df-rex 3147 . . . . 5 (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑧(𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
2825, 26, 273bitr4ri 306 . . . 4 (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅)
29 fveq2 6673 . . . . . . 7 (𝑤 = ⟨𝑎, 𝑑⟩ → ((AP‘𝐾)‘𝑤) = ((AP‘𝐾)‘⟨𝑎, 𝑑⟩))
30 df-ov 7162 . . . . . . 7 (𝑎(AP‘𝐾)𝑑) = ((AP‘𝐾)‘⟨𝑎, 𝑑⟩)
3129, 30syl6eqr 2877 . . . . . 6 (𝑤 = ⟨𝑎, 𝑑⟩ → ((AP‘𝐾)‘𝑤) = (𝑎(AP‘𝐾)𝑑))
3231sseq1d 4001 . . . . 5 (𝑤 = ⟨𝑎, 𝑑⟩ → (((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3332rexxp 5716 . . . 4 (∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
3423, 28, 333bitr3g 315 . . 3 (𝜑 → ((ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3534exbidv 1921 . 2 (𝜑 → (∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3616, 35bitrd 281 1 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  wne 3019  wrex 3142  Vcvv 3497  cin 3938  wss 3939  c0 4294  𝒫 cpw 4542  {csn 4570  cop 4576   class class class wbr 5069   × cxp 5556  ccnv 5557  ran crn 5559  cima 5561   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  cn 11641  0cn0 11900  APcvdwa 16304   MonoAP cvdwm 16305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-vdwap 16307  df-vdwmc 16308
This theorem is referenced by:  vdwmc2  16318  vdwlem1  16320  vdwlem2  16321  vdwlem9  16328  vdwlem10  16329  vdwlem12  16331  vdwlem13  16332
  Copyright terms: Public domain W3C validator