Detailed syntax breakdown of Definition df-vdwpc
| Step | Hyp | Ref
| Expression |
| 1 | | cvdwp 17005 |
. 2
class
PolyAP |
| 2 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
| 3 | 2 | cv 1539 |
. . . . . . . . . 10
class 𝑎 |
| 4 | | vi |
. . . . . . . . . . . 12
setvar 𝑖 |
| 5 | 4 | cv 1539 |
. . . . . . . . . . 11
class 𝑖 |
| 6 | | vd |
. . . . . . . . . . . 12
setvar 𝑑 |
| 7 | 6 | cv 1539 |
. . . . . . . . . . 11
class 𝑑 |
| 8 | 5, 7 | cfv 6561 |
. . . . . . . . . 10
class (𝑑‘𝑖) |
| 9 | | caddc 11158 |
. . . . . . . . . 10
class
+ |
| 10 | 3, 8, 9 | co 7431 |
. . . . . . . . 9
class (𝑎 + (𝑑‘𝑖)) |
| 11 | | vk |
. . . . . . . . . . 11
setvar 𝑘 |
| 12 | 11 | cv 1539 |
. . . . . . . . . 10
class 𝑘 |
| 13 | | cvdwa 17003 |
. . . . . . . . . 10
class
AP |
| 14 | 12, 13 | cfv 6561 |
. . . . . . . . 9
class
(AP‘𝑘) |
| 15 | 10, 8, 14 | co 7431 |
. . . . . . . 8
class ((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) |
| 16 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
| 17 | 16 | cv 1539 |
. . . . . . . . . 10
class 𝑓 |
| 18 | 17 | ccnv 5684 |
. . . . . . . . 9
class ◡𝑓 |
| 19 | 10, 17 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘(𝑎 + (𝑑‘𝑖))) |
| 20 | 19 | csn 4626 |
. . . . . . . . 9
class {(𝑓‘(𝑎 + (𝑑‘𝑖)))} |
| 21 | 18, 20 | cima 5688 |
. . . . . . . 8
class (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) |
| 22 | 15, 21 | wss 3951 |
. . . . . . 7
wff ((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) |
| 23 | | c1 11156 |
. . . . . . . 8
class
1 |
| 24 | | vm |
. . . . . . . . 9
setvar 𝑚 |
| 25 | 24 | cv 1539 |
. . . . . . . 8
class 𝑚 |
| 26 | | cfz 13547 |
. . . . . . . 8
class
... |
| 27 | 23, 25, 26 | co 7431 |
. . . . . . 7
class
(1...𝑚) |
| 28 | 22, 4, 27 | wral 3061 |
. . . . . 6
wff
∀𝑖 ∈
(1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) |
| 29 | 4, 27, 19 | cmpt 5225 |
. . . . . . . . 9
class (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) |
| 30 | 29 | crn 5686 |
. . . . . . . 8
class ran
(𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) |
| 31 | | chash 14369 |
. . . . . . . 8
class
♯ |
| 32 | 30, 31 | cfv 6561 |
. . . . . . 7
class
(♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) |
| 33 | 32, 25 | wceq 1540 |
. . . . . 6
wff
(♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚 |
| 34 | 28, 33 | wa 395 |
. . . . 5
wff
(∀𝑖 ∈
(1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚) |
| 35 | | cn 12266 |
. . . . . 6
class
ℕ |
| 36 | | cmap 8866 |
. . . . . 6
class
↑m |
| 37 | 35, 27, 36 | co 7431 |
. . . . 5
class (ℕ
↑m (1...𝑚)) |
| 38 | 34, 6, 37 | wrex 3070 |
. . . 4
wff
∃𝑑 ∈
(ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚) |
| 39 | 38, 2, 35 | wrex 3070 |
. . 3
wff
∃𝑎 ∈
ℕ ∃𝑑 ∈
(ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚) |
| 40 | 39, 24, 11, 16 | coprab 7432 |
. 2
class
{〈〈𝑚,
𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)} |
| 41 | 1, 40 | wceq 1540 |
1
wff PolyAP =
{〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)} |