Home | Metamath
Proof Explorer Theorem List (p. 170 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29568) |
Hilbert Space Explorer
(29569-31091) |
Users' Mathboxes
(31092-46925) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cshws0 16901* | The size of the set of (different!) words resulting by cyclically shifting an empty word is 0. (Contributed by AV, 8-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ (𝑊 = ∅ → (♯‘𝑀) = 0) | ||
Theorem | cshwrepswhash1 16902* | The size of the set of (different!) words resulting by cyclically shifting a nonempty "repeated symbol word" is 1. (Contributed by AV, 18-May-2018.) (Revised by AV, 8-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (♯‘𝑀) = 1) | ||
Theorem | cshwshashnsame 16903* | If a word (not consisting of identical symbols) has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊))) | ||
Theorem | cshwshash 16904* | If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) | ||
Theorem | prmlem0 16905* | Lemma for prmlem1 16907 and prmlem2 16919. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ((¬ 2 ∥ 𝑀 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) & ⊢ (𝐾 ∈ ℙ → ¬ 𝐾 ∥ 𝑁) & ⊢ (𝐾 + 2) = 𝑀 ⇒ ⊢ ((¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) | ||
Theorem | prmlem1a 16906* | A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 1 < 𝑁 & ⊢ ¬ 2 ∥ 𝑁 & ⊢ ¬ 3 ∥ 𝑁 & ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | prmlem1 16907 | A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 1 < 𝑁 & ⊢ ¬ 2 ∥ 𝑁 & ⊢ ¬ 3 ∥ 𝑁 & ⊢ 𝑁 < ;25 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 5prm 16908 | 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ 5 ∈ ℙ | ||
Theorem | 6nprm 16909 | 6 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ¬ 6 ∈ ℙ | ||
Theorem | 7prm 16910 | 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ 7 ∈ ℙ | ||
Theorem | 8nprm 16911 | 8 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ¬ 8 ∈ ℙ | ||
Theorem | 9nprm 16912 | 9 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ¬ 9 ∈ ℙ | ||
Theorem | 10nprm 16913 | 10 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ ¬ ;10 ∈ ℙ | ||
Theorem | 11prm 16914 | 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;11 ∈ ℙ | ||
Theorem | 13prm 16915 | 13 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;13 ∈ ℙ | ||
Theorem | 17prm 16916 | 17 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;17 ∈ ℙ | ||
Theorem | 19prm 16917 | 19 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;19 ∈ ℙ | ||
Theorem | 23prm 16918 | 23 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;23 ∈ ℙ | ||
Theorem | prmlem2 16919 |
Our last proving session got as far as 25 because we started with the
two "bootstrap" primes 2 and 3, and the next prime is 5, so
knowing that
2 and 3 are prime and 4 is not allows to cover the numbers less than
5↑2 = 25. Additionally, nonprimes are
"easy", so we can extend
this range of known prime/nonprimes all the way until 29, which is the
first prime larger than 25. Thus, in this lemma we extend another
blanket out to 29↑2 = 841, from which we
can prove even more
primes. If we wanted, we could keep doing this, but the goal is
Bertrand's postulate, and for that we only need a few large primes - we
don't need to find them all, as we have been doing thus far. So after
this blanket runs out, we'll have to switch to another method (see
1259prm 16935).
As a side note, you can see the pattern of the primes in the indentation pattern of this lemma! (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 < ;;841 & ⊢ 1 < 𝑁 & ⊢ ¬ 2 ∥ 𝑁 & ⊢ ¬ 3 ∥ 𝑁 & ⊢ ¬ 5 ∥ 𝑁 & ⊢ ¬ 7 ∥ 𝑁 & ⊢ ¬ ;11 ∥ 𝑁 & ⊢ ¬ ;13 ∥ 𝑁 & ⊢ ¬ ;17 ∥ 𝑁 & ⊢ ¬ ;19 ∥ 𝑁 & ⊢ ¬ ;23 ∥ 𝑁 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 37prm 16920 | 37 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;37 ∈ ℙ | ||
Theorem | 43prm 16921 | 43 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;43 ∈ ℙ | ||
Theorem | 83prm 16922 | 83 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;83 ∈ ℙ | ||
Theorem | 139prm 16923 | 139 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;139 ∈ ℙ | ||
Theorem | 163prm 16924 | 163 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;163 ∈ ℙ | ||
Theorem | 317prm 16925 | 317 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;317 ∈ ℙ | ||
Theorem | 631prm 16926 | 631 is a prime number. (Contributed by Mario Carneiro, 1-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;631 ∈ ℙ | ||
Theorem | prmo4 16927 | The primorial of 4. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘4) = 6 | ||
Theorem | prmo5 16928 | The primorial of 5. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘5) = ;30 | ||
Theorem | prmo6 16929 | The primorial of 6. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘6) = ;30 | ||
Theorem | 1259lem1 16930 | Lemma for 1259prm 16935. Calculate a power mod. In decimal, we calculate 2↑16 = 52𝑁 + 68≡68 and 2↑17≡68 · 2 = 136 in this lemma. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;17) mod 𝑁) = (;;136 mod 𝑁) | ||
Theorem | 1259lem2 16931 | Lemma for 1259prm 16935. Calculate a power mod. In decimal, we calculate 2↑34 = (2↑17)↑2≡136↑2≡14𝑁 + 870. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;34) mod 𝑁) = (;;870 mod 𝑁) | ||
Theorem | 1259lem3 16932 | Lemma for 1259prm 16935. Calculate a power mod. In decimal, we calculate 2↑38 = 2↑34 · 2↑4≡870 · 16 = 11𝑁 + 71 and 2↑76 = (2↑34)↑2≡71↑2 = 4𝑁 + 5≡5. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;76) mod 𝑁) = (5 mod 𝑁) | ||
Theorem | 1259lem4 16933 | Lemma for 1259prm 16935. Calculate a power mod. In decimal, we calculate 2↑306 = (2↑76)↑4 · 4≡5↑4 · 4 = 2𝑁 − 18, 2↑612 = (2↑306)↑2≡18↑2 = 324, 2↑629 = 2↑612 · 2↑17≡324 · 136 = 35𝑁 − 1 and finally 2↑(𝑁 − 1) = (2↑629)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
Theorem | 1259lem5 16934 | Lemma for 1259prm 16935. Calculate the GCD of 2↑34 − 1≡869 with 𝑁 = 1259. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 | ||
Theorem | 1259prm 16935 | 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 2503lem1 16936 | Lemma for 2503prm 16939. Calculate a power mod. In decimal, we calculate 2↑18 = 512↑2 = 104𝑁 + 1832≡1832. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ ((2↑;18) mod 𝑁) = (;;;1832 mod 𝑁) | ||
Theorem | 2503lem2 16937 | Lemma for 2503prm 16939. Calculate a power mod. We calculate 2↑19 = 2↑18 · 2≡1832 · 2 = 𝑁 + 1161, 2↑38 = (2↑19)↑2≡1161↑2 = 538𝑁 + 1307, 2↑39 = 2↑38 · 2≡1307 · 2 = 𝑁 + 111, 2↑78 = (2↑39)↑2≡111↑2 = 5𝑁 − 194, 2↑156 = (2↑78)↑2≡194↑2 = 15𝑁 + 91, 2↑312 = (2↑156)↑2≡91↑2 = 3𝑁 + 772, 2↑624 = (2↑312)↑2≡772↑2 = 238𝑁 + 270, 2↑1248 = (2↑624)↑2≡270↑2 = 29𝑁 + 313, 2↑1251 = 2↑1248 · 8≡313 · 8 = 𝑁 + 1 and finally 2↑(𝑁 − 1) = (2↑1251)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
Theorem | 2503lem3 16938 | Lemma for 2503prm 16939. Calculate the GCD of 2↑18 − 1≡1831 with 𝑁 = 2503. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ (((2↑;18) − 1) gcd 𝑁) = 1 | ||
Theorem | 2503prm 16939 | 2503 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 4001lem1 16940 | Lemma for 4001prm 16944. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑;;200) mod 𝑁) = (;;902 mod 𝑁) | ||
Theorem | 4001lem2 16941 | Lemma for 4001prm 16944. Calculate a power mod. In decimal, we calculate 2↑400 = (2↑200)↑2≡902↑2 = 203𝑁 + 1401 and 2↑800 = (2↑400)↑2≡1401↑2 = 490𝑁 + 2311 ≡2311. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑;;800) mod 𝑁) = (;;;2311 mod 𝑁) | ||
Theorem | 4001lem3 16942 | Lemma for 4001prm 16944. Calculate a power mod. In decimal, we calculate 2↑1000 = 2↑800 · 2↑200≡2311 · 902 = 521𝑁 + 1 and finally 2↑(𝑁 − 1) = (2↑1000)↑4≡1↑4 = 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
Theorem | 4001lem4 16943 | Lemma for 4001prm 16944. Calculate the GCD of 2↑800 − 1≡2310 with 𝑁 = 4001. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ (((2↑;;800) − 1) gcd 𝑁) = 1 | ||
Theorem | 4001prm 16944 | 4001 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ 𝑁 ∈ ℙ | ||
An "extensible structure" (or "structure" in short, at least in this section) is used to define a specific group, ring, poset, and so on. An extensible structure can contain many components. For example, a group will have at least two components (base set and operation), although it can be further specialized by adding other components such as a multiplicative operation for rings (and still remain a group per our definition). Thus, every ring is also a group. This extensible structure approach allows theorems from more general structures (such as groups) to be reused for more specialized structures (such as rings) without having to reprove anything. Structures are common in mathematics, but in informal (natural language) proofs the details are assumed in ways that we must make explicit. An extensible structure is implemented as a function (a set of ordered pairs) on a finite (and not necessarily sequential) subset of ℕ. The function's argument is the index of a structure component (such as 1 for the base set of a group), and its value is the component (such as the base set). By convention, we normally avoid direct reference to the hard-coded numeric index and instead use structure component extractors such as ndxid 16996 and strfv 17003. Using extractors makes it easier to change numeric indices and also makes the components' purpose clearer. For example, as noted in ndxid 16996, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using the extensible structure {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. See section header comment mmtheorems.html#cnx 16996 for more details on numeric indices versus the structure component extractors. There are many other possible ways to handle structures. We chose this extensible structure approach because this approach (1) results in simpler notation than other approaches we are aware of, and (2) is easier to do proofs with. We cannot use an approach that uses "hidden" arguments; Metamath does not support hidden arguments, and in any case we want nothing hidden. It would be possible to use a categorical approach (e.g., something vaguely similar to Lean's mathlib). However, instances (the chain of proofs that an 𝑋 is a 𝑌 via a bunch of forgetful functors) can cause serious performance problems for automated tooling, and the resulting proofs would be painful to look at directly (in the case of Lean, they are long past the level where people would find it acceptable to look at them directly). Metamath is working under much stricter conditions than this, and it has still managed to achieve about the same level of flexibility through this "extensible structure" approach. To create a substructure of a given extensible structure, you can simply use the multifunction restriction operator for extensible structures ↾s as defined in df-ress 17040. This can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone. Individual kinds of structures will need to handle this behavior by ignoring operators' values outside the range (like Ring), defining a function using the base set and applying that (like TopGrp), or explicitly truncating the slot before use (like MetSp). For example, the unital ring of integers ℤring is defined in df-zring 20777 as simply ℤring = (ℂfld ↾s ℤ). This can be similarly done for all other subsets of ℂ, which has all the structure we can show applies to it, and this all comes "for free". Should we come up with some new structure in the future that we wish ℂ to inherit, then we change the definition of ℂfld, reprove all the slot extraction theorems, add a new one, and that's it. None of the other downstream theorems have to change. Note that the construct of df-prds 17256 addresses a different situation. It is not possible to have SubGroup and SubRing be the same thing because they produce different outputs on the same input. The subgroups of an extensible structure treated as a group are not the same as the subrings of that same structure. With df-prds 17256 it can actually reasonably perform the task, that is, being the product group given a family of groups, while also being the product ring given a family of rings. There is no contradiction here because the group part of a product ring is a product group. There is also a general theory of "substructure algebras", in the form of df-mre 17393 and df-acs 17396. SubGroup is a Moore collection, as is SubRing, SubRng and many other substructure collections. But it is not useful for picking out a particular collection of interest; SubRing and SubGroup still need to be defined and they are distinct --- nothing is going to select these definitions for us. Extensible structures only work well when they represent concrete categories, where there is a "base set", morphisms are functions, and subobjects are subsets with induced operations. In short, they primarily work well for "sets with (some) extra structure". Extensible structures may not suffice for more complicated situations. For example, in manifolds, ↾s would not work. That said, extensible structures are sufficient for many of the structures that set.mm currently considers, and offer a good compromise for a goal-oriented formalization. | ||
Syntax | cstr 16945 | Extend class notation with the class of structures with components numbered below 𝐴. |
class Struct | ||
Definition | df-struct 16946* |
Define a structure with components in 𝑀...𝑁. This is not a
requirement for groups, posets, etc., but it is a useful assumption for
component extraction theorems.
As mentioned in the section header, an "extensible structure should be implemented as a function (a set of ordered pairs)". The current definition, however, is less restrictive: it allows for classes which contain the empty set ∅ to be extensible structures. Because of 0nelfun 6507, such classes cannot be functions. Without the empty set, however, a structure must be a function, see structn0fun 16950: 𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}). Allowing an extensible structure to contain the empty set ensures that expressions like {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} are structures without asserting or implying that 𝐴, 𝐵, 𝐶 and 𝐷 are sets (if 𝐴 or 𝐵 is a proper class, then 〈𝐴, 𝐵〉 = ∅, see opprc 4845). This is used critically in strle1 16957, strle2 16958, strle3 16959 and strleun 16956 to avoid sethood hypotheses on the "payload" sets: without this, ipsstr 17144 and theorems like it will have many sethood assumptions, and may not even be usable in the empty context. Instead, the sethood assumption is deferred until it is actually needed, e.g., ipsbase 17145, which requires that the base set be a set but not any of the other components. Usually, a concrete structure like ℂfld does not contain the empty set, and therefore is a function, see cnfldfun 20715. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | ||
Theorem | brstruct 16947 | The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ Rel Struct | ||
Theorem | isstruct2 16948 | The property of being a structure with components in (1st ‘𝑋)...(2nd ‘𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) | ||
Theorem | structex 16949 | A structure is a set. (Contributed by AV, 10-Nov-2021.) |
⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) | ||
Theorem | structn0fun 16950 | A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.) |
⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) | ||
Theorem | isstruct 16951 | The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ (𝐹 Struct 〈𝑀, 𝑁〉 ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) | ||
Theorem | structcnvcnv 16952 | Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) | ||
Theorem | structfung 16953 | The converse of the converse of a structure is a function. Closed form of structfun 16954. (Contributed by AV, 12-Nov-2021.) |
⊢ (𝐹 Struct 𝑋 → Fun ◡◡𝐹) | ||
Theorem | structfun 16954 | Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof shortened by AV, 12-Nov-2021.) |
⊢ 𝐹 Struct 𝑋 ⇒ ⊢ Fun ◡◡𝐹 | ||
Theorem | structfn 16955 | Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐹 Struct 〈𝑀, 𝑁〉 ⇒ ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝑁)) | ||
Theorem | strleun 16956 | Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐹 Struct 〈𝐴, 𝐵〉 & ⊢ 𝐺 Struct 〈𝐶, 𝐷〉 & ⊢ 𝐵 < 𝐶 ⇒ ⊢ (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉 | ||
Theorem | strle1 16957 | Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 ⇒ ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 | ||
Theorem | strle2 16958 | Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 & ⊢ 𝐼 < 𝐽 & ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 ⇒ ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉 | ||
Theorem | strle3 16959 | Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 & ⊢ 𝐼 < 𝐽 & ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 & ⊢ 𝐽 < 𝐾 & ⊢ 𝐾 ∈ ℕ & ⊢ 𝐶 = 𝐾 ⇒ ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉} Struct 〈𝐼, 𝐾〉 | ||
Theorem | sbcie2s 16960* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ 𝐴 = (𝐸‘𝑊) & ⊢ 𝐵 = (𝐹‘𝑊) & ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏]𝜓 ↔ 𝜑)) | ||
Theorem | sbcie3s 16961* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
⊢ 𝐴 = (𝐸‘𝑊) & ⊢ 𝐵 = (𝐹‘𝑊) & ⊢ 𝐶 = (𝐺‘𝑊) & ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏][(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) | ||
Syntax | csts 16962 | Set components of a structure. |
class sSet | ||
Definition | df-sets 16963* | Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 17040 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. Or df-mgp 19816, which takes a ring and overrides its addition operation with the multiplicative operation, so that we can consider the "multiplicative group" using group and monoid theorems, which expect the operation to be in the +g slot instead of the .r slot. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) | ||
Theorem | reldmsets 16964 | The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ Rel dom sSet | ||
Theorem | setsvalg 16965 | Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) | ||
Theorem | setsval 16966 | Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | ||
Theorem | fvsetsid 16967 | The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = 𝑌) | ||
Theorem | fsets 16968 | The structure replacement function is a function. (Contributed by SO, 12-Jul-2018.) |
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹 sSet 〈𝑋, 𝑌〉):𝐴⟶𝐵) | ||
Theorem | setsdm 16969 | The domain of a structure with replacement is the domain of the original structure extended by the index of the replacement. (Contributed by AV, 7-Jun-2021.) |
⊢ ((𝐺 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → dom (𝐺 sSet 〈𝐼, 𝐸〉) = (dom 𝐺 ∪ {𝐼})) | ||
Theorem | setsfun 16970 | A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.) |
⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun (𝐺 sSet 〈𝐼, 𝐸〉)) | ||
Theorem | setsfun0 16971 | A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 16970 is useful for proofs based on isstruct2 16948 which requires Fun (𝐹 ∖ {∅}) for 𝐹 to be an extensible structure. (Contributed by AV, 7-Jun-2021.) |
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝐺 sSet 〈𝐼, 𝐸〉) ∖ {∅})) | ||
Theorem | setsn0fun 16972 | The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) | ||
Theorem | setsstruct2 16973 | An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021.) |
⊢ (((𝐺 Struct 𝑋 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ) ∧ 𝑌 = 〈if(𝐼 ≤ (1st ‘𝑋), 𝐼, (1st ‘𝑋)), if(𝐼 ≤ (2nd ‘𝑋), (2nd ‘𝑋), 𝐼)〉) → (𝐺 sSet 〈𝐼, 𝐸〉) Struct 𝑌) | ||
Theorem | setsexstruct2 16974* | An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021.) |
⊢ ((𝐺 Struct 𝑋 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ) → ∃𝑦(𝐺 sSet 〈𝐼, 𝐸〉) Struct 𝑦) | ||
Theorem | setsstruct 16975 | An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 9-Jun-2021.) (Revised by AV, 14-Nov-2021.) |
⊢ ((𝐸 ∈ 𝑉 ∧ 𝐼 ∈ (ℤ≥‘𝑀) ∧ 𝐺 Struct 〈𝑀, 𝑁〉) → (𝐺 sSet 〈𝐼, 𝐸〉) Struct 〈𝑀, if(𝐼 ≤ 𝑁, 𝑁, 𝐼)〉) | ||
Theorem | wunsets 16976 | Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑆 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) | ||
Theorem | setsres 16977 | The structure replacement function does not affect the value of 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (𝑆 ∈ 𝑉 → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | ||
Theorem | setsabs 16978 | Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) | ||
Theorem | setscom 16979 | Component-setting is commutative when the x-values are different. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ((𝑆 sSet 〈𝐴, 𝐶〉) sSet 〈𝐵, 𝐷〉) = ((𝑆 sSet 〈𝐵, 𝐷〉) sSet 〈𝐴, 𝐶〉)) | ||
Syntax | cslot 16980 | Extend class notation with the slot function. |
class Slot 𝐴 | ||
Definition | df-slot 16981* |
Define the slot extractor for extensible structures. The class
Slot 𝐴 is a function whose argument can be
any set, although it is
meaningful only if that set is a member of an extensible structure (such
as a partially ordered set (df-poset 18129) or a group (df-grp 18677)).
Note that Slot 𝐴 is implemented as "evaluation at 𝐴". That is, (Slot 𝐴‘𝑆) is defined to be (𝑆‘𝐴), where 𝐴 will typically be an index (which is implemented as a small natural number) of a component of an extensible structure 𝑆. Each extensible structure is a function defined on specific (natural number) "slots", and the function Slot 𝐴 extracts the structure's component as a function value at a particular slot (with index 𝐴). The special "structure" ndx, defined as the identity function restricted to ℕ, can be used to extract the number 𝐴 from a slot, since (Slot 𝐴‘ndx) = 𝐴 (see ndxarg 16995). This is typically used to refer to the number of a slot when defining structures without having to expose the detail of what that number is (for instance, we use the expression (Base‘ndx) in theorems and proofs instead of its hard-coded, numeric value 1), and discourage using the specific definition of slot extractors like Base = Slot 1 (see df-base 17011). Actually, these definitions are used in two basic theorems named *id (theorems of the form 𝐶 = Slot (𝐶‘ndx)) and *ndx (theorems of the form (𝐶‘ndx) = 𝑁) only (see, for example, baseid 17013 and basendx 17019), except additionally in the discouraged theorem baseval 17012 to demonstrate the representations of the value of the base set extractor. The *id theorems are implementation independent equivalents of the definitions by the means of ndxid 16996, but the *ndx theorems still depend on the hard-coded values of the indices. Therefore, the usage of these *ndx theorems is also discouraged (for more details see the section header comment mmtheorems.html#cnx 16996). Example: The group operation is the second component, i.e., the component in the second slot, of a group-like structure 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} (see grpstr 17092). The slot extractor +g = Slot 2 (see df-plusg 17073) applied on the structure 𝐺 provides the group operation + = (+g‘𝐺). Expanding the defintions, we get + = (Slot 2‘𝐺) = (𝐺‘2) = (𝐺‘(+g‘ndx)) (for the last equation, see plusgndx 17086). The class Slot cannot be defined as (𝑥 ∈ V ↦ (𝑓 ∈ V ↦ (𝑓‘𝑥))) because each Slot 𝐴 is a function on the proper class V so is itself a proper class, and the values of functions are sets (fvex 6843). It is necessary to allow proper classes as values of Slot 𝐴 since for instance the class of all (base sets of) groups is proper. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥‘𝐴)) | ||
Theorem | sloteq 16982 | Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.) |
⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) | ||
Theorem | slotfn 16983 | A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ 𝐸 Fn V | ||
Theorem | strfvnd 16984 | Deduction version of strfvn 16985. (Contributed by Mario Carneiro, 15-Nov-2014.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) | ||
Theorem | strfvn 16985 |
Value of a structure component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 17011) and 𝑁 is the
index of the component. 𝑆 is a structure, i.e. a specific
member of
a class of structures such as Poset (df-poset 18129) where
𝑆
∈ Poset.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. Alternatively, use strfv 17003 instead of strfvn 16985. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.) |
⊢ 𝑆 ∈ V & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) | ||
Theorem | strfvss 16986 | A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 | ||
Theorem | wunstr 16987 | Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑆 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) | ||
Theorem | str0 16988 | All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
⊢ 𝐹 = Slot 𝐼 ⇒ ⊢ ∅ = (𝐹‘∅) | ||
Theorem | strfvi 16989 | Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑋 = (𝐸‘𝑆) ⇒ ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) | ||
Theorem | fveqprc 16990 | Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 20824. (Contributed by AV, 31-Oct-2024.) |
⊢ (𝐸‘∅) = ∅ & ⊢ 𝑌 = (𝐹‘𝑋) ⇒ ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) | ||
Theorem | oveqprc 16991 | Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like resvlem 31824. (Contributed by AV, 31-Oct-2024.) |
⊢ (𝐸‘∅) = ∅ & ⊢ 𝑍 = (𝑋𝑂𝑌) & ⊢ Rel dom 𝑂 ⇒ ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) | ||
The structure component index extractor ndx, defined in this subsection, is used to get the numeric argument from a defined structure component extractor such as df-base 17011 (see ndxarg 16995). For each defined structure component extractor, there should be a corresponding specific theorem providing its index, like basendx 17019. The usage of these theorems, however, is discouraged since the particular value for the index is an implementation detail. It is generally sufficient to work with (Base‘ndx) instead of the hard-coded index value, and use theorems such as baseid 17013 and basendxnplusgndx 17090. The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint (for example in proofs such as cznabel 45928, based on setsnid 17008) or even ordered (in proofs such as lmodstr 17133). The requirement that the indices are distinct is necessary for sets of ordered pairs to be extensible structures, whereas the ordering allows for proofs avoiding the usage of quadradically many inequalities (compare cnfldfun 20715 with cnfldfunALT 20716). As for the inequalities, it is recommended to provide them explicitly as theorems like basendxnplusgndx 17090, whenever they are required. Since these theorems use discouraged slot theorems, they should be placed near the definition of a slot (within the same subsection), so that the range of usages of discouraged theorems is tightly limited. Although there could be quadradically many of them in the total number of indices, much less are actually available (and not much more are expected). As for the ordering, there are some theorems like basendxltplusgndx 17089 providing the less-than relationship between two indices. These theorems are also proved by discouraged theorems, so they should be placed near the definition of a slot (within the same subsection), too. However, since such theorems are rarely used (in structure building theorems *str like rngstr 17106), it is not recommended to provide explicit theorems for all of them, but to use the (discouraged) *ndx theorems as in lmodstr 17133. Therefore, *str theorems generally depend on the hard-coded values of the indices. | ||
Syntax | cnx 16992 | Extend class notation with the structure component index extractor. |
class ndx | ||
Definition | df-ndx 16993 | Define the structure component index extractor. See Theorem ndxarg 16995 to understand its purpose. The restriction to ℕ ensures that ndx is a set. The restriction to some set is necessary since I is a proper class. In principle, we could have chosen ℂ or (if we revise all structure component definitions such as df-base 17011) another set such as the set of finite ordinals ω (df-om 7786). (Contributed by NM, 4-Sep-2011.) |
⊢ ndx = ( I ↾ ℕ) | ||
Theorem | wunndx 16994 | Closure of the index extractor in an infinite weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → ndx ∈ 𝑈) | ||
Theorem | ndxarg 16995 | Get the numeric argument from a defined structure component extractor such as df-base 17011. (Contributed by Mario Carneiro, 6-Oct-2013.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐸‘ndx) = 𝑁 | ||
Theorem | ndxid 16996 |
A structure component extractor is defined by its own index. This
theorem, together with strfv 17003 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 17011 and the ;10 in
df-ple 17080, making it easier to change should the need
arise.
For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. The latter, while shorter to state, requires revision if we later change ;10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝐸 = Slot (𝐸‘ndx) | ||
Theorem | strndxid 16997 | The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.) (New usage is discouraged.) Use strfvnd 16984 directly with 𝑁 set to (𝐸‘ndx) if possible. |
⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) | ||
Theorem | setsidvald 16998 |
Value of the structure replacement function, deduction version.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) | ||
Theorem | setsidvaldOLD 16999 | Obsolete version of setsidvald 16998 as of 17-Oct-2024. (Contributed by AV, 14-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) | ||
Theorem | strfvd 17000 | Deduction version of strfv 17003. (Contributed by Mario Carneiro, 15-Nov-2014.) |
⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |