| Metamath
Proof Explorer Theorem List (p. 170 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-gz 16901 | Define the set of gaussian integers, which are complex numbers whose real and imaginary parts are integers. (Note that the [i] is actually part of the symbol token and has no independent meaning.) (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)} | ||
| Theorem | elgz 16902 | Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | ||
| Theorem | gzcn 16903 | A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | ||
| Theorem | zgz 16904 | An integer is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℤ[i]) | ||
| Theorem | igz 16905 | i is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ i ∈ ℤ[i] | ||
| Theorem | gznegcl 16906 | The gaussian integers are closed under negation. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℤ[i] → -𝐴 ∈ ℤ[i]) | ||
| Theorem | gzcjcl 16907 | The gaussian integers are closed under conjugation. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℤ[i] → (∗‘𝐴) ∈ ℤ[i]) | ||
| Theorem | gzaddcl 16908 | The gaussian integers are closed under addition. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℤ[i]) | ||
| Theorem | gzmulcl 16909 | The gaussian integers are closed under multiplication. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℤ[i]) | ||
| Theorem | gzreim 16910 | Construct a gaussian integer from real and imaginary parts. (Contributed by Mario Carneiro, 16-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + (i · 𝐵)) ∈ ℤ[i]) | ||
| Theorem | gzsubcl 16911 | The gaussian integers are closed under subtraction. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 − 𝐵) ∈ ℤ[i]) | ||
| Theorem | gzabssqcl 16912 | The squared norm of a gaussian integer is an integer. (Contributed by Mario Carneiro, 16-Jul-2014.) |
| ⊢ (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) ∈ ℕ0) | ||
| Theorem | 4sqlem5 16913 | Lemma for 4sq 16935. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) | ||
| Theorem | 4sqlem6 16914 | Lemma for 4sq 16935. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) | ||
| Theorem | 4sqlem7 16915 | Lemma for 4sq 16935. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) | ||
| Theorem | 4sqlem8 16916 | Lemma for 4sq 16935. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2))) | ||
| Theorem | 4sqlem9 16917 | Lemma for 4sq 16935. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) = 0) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ (𝐴↑2)) | ||
| Theorem | 4sqlem10 16918 | Lemma for 4sq 16935. (Contributed by Mario Carneiro, 16-Jul-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ ((𝜑 ∧ 𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2))) | ||
| Theorem | 4sqlem1 16919* | Lemma for 4sq 16935. The set 𝑆 is the set of all numbers that are expressible as a sum of four squares. Our goal is to show that 𝑆 = ℕ0; here we show one subset direction. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ 𝑆 ⊆ ℕ0 | ||
| Theorem | 4sqlem2 16920* | Lemma for 4sq 16935. Change bound variables in 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) | ||
| Theorem | 4sqlem3 16921* | Lemma for 4sq 16935. Sufficient condition to be in 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆) | ||
| Theorem | 4sqlem4a 16922* | Lemma for 4sqlem4 16923. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) ∈ 𝑆) | ||
| Theorem | 4sqlem4 16923* | Lemma for 4sq 16935. We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))) | ||
| Theorem | mul4sqlem 16924* | Lemma for mul4sq 16925: algebraic manipulations. The extra assumptions involving 𝑀 are for a part of 4sqlem17 16932 which needs to know not just that the product is a sum of squares, but also that it preserves divisibility by 𝑀. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝐴 ∈ ℤ[i]) & ⊢ (𝜑 → 𝐵 ∈ ℤ[i]) & ⊢ (𝜑 → 𝐶 ∈ ℤ[i]) & ⊢ (𝜑 → 𝐷 ∈ ℤ[i]) & ⊢ 𝑋 = (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) & ⊢ 𝑌 = (((abs‘𝐶)↑2) + ((abs‘𝐷)↑2)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ((𝐴 − 𝐶) / 𝑀) ∈ ℤ[i]) & ⊢ (𝜑 → ((𝐵 − 𝐷) / 𝑀) ∈ ℤ[i]) & ⊢ (𝜑 → (𝑋 / 𝑀) ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑋 / 𝑀) · (𝑌 / 𝑀)) ∈ 𝑆) | ||
| Theorem | mul4sq 16925* | Euler's four-square identity: The product of two sums of four squares is also a sum of four squares. This is usually quoted as an explicit formula involving eight real variables; we save some time by working with complex numbers (gaussian integers) instead, so that we only have to work with four variables, and also hiding the actual formula for the product in the proof of mul4sqlem 16924. (For the curious, the explicit formula that is used is ( ∣ 𝑎 ∣ ↑2 + ∣ 𝑏 ∣ ↑2)( ∣ 𝑐 ∣ ↑2 + ∣ 𝑑 ∣ ↑2) = ∣ 𝑎∗ · 𝑐 + 𝑏 · 𝑑∗ ∣ ↑2 + ∣ 𝑎∗ · 𝑑 − 𝑏 · 𝑐∗ ∣ ↑2.) (Contributed by Mario Carneiro, 14-Jul-2014.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) | ||
| Theorem | 4sqlem11 16926* | Lemma for 4sq 16935. Use the pigeonhole principle to show that the sets {𝑚↑2 ∣ 𝑚 ∈ (0...𝑁)} and {-1 − 𝑛↑2 ∣ 𝑛 ∈ (0...𝑁)} have a common element, mod 𝑃. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} & ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) ⇒ ⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅) | ||
| Theorem | 4sqlem12 16927* | Lemma for 4sq 16935. For any odd prime 𝑃, there is a 𝑘 < 𝑃 such that 𝑘𝑃 − 1 is a sum of two squares. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} & ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) | ||
| Theorem | 4sqlem13 16928* | Lemma for 4sq 16935. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) ⇒ ⊢ (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃)) | ||
| Theorem | 4sqlem14 16929* | Lemma for 4sq 16935. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) & ⊢ (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) ⇒ ⊢ (𝜑 → 𝑅 ∈ ℕ0) | ||
| Theorem | 4sqlem15 16930* | Lemma for 4sq 16935. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) & ⊢ (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) ⇒ ⊢ ((𝜑 ∧ 𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))) | ||
| Theorem | 4sqlem16 16931* | Lemma for 4sq 16935. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) & ⊢ (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) ⇒ ⊢ (𝜑 → (𝑅 ≤ 𝑀 ∧ ((𝑅 = 0 ∨ 𝑅 = 𝑀) → (𝑀↑2) ∥ (𝑀 · 𝑃)))) | ||
| Theorem | 4sqlem17 16932* | Lemma for 4sq 16935. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) & ⊢ (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | 4sqlem18 16933* | Lemma for 4sq 16935. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑃 ∈ 𝑆) | ||
| Theorem | 4sqlem19 16934* | Lemma for 4sq 16935. The proof is by strong induction - we show that if all the integers less than 𝑘 are in 𝑆, then 𝑘 is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 16933. If 𝑘 is 0, 1, 2, we show 𝑘 ∈ 𝑆 directly; otherwise if 𝑘 is composite, 𝑘 is the product of two numbers less than it (and hence in 𝑆 by assumption), so by mul4sq 16925 𝑘 ∈ 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ ℕ0 = 𝑆 | ||
| Theorem | 4sq 16935* | Lagrange's four-square theorem, or Bachet's conjecture: every nonnegative integer is expressible as a sum of four squares. This is Metamath 100 proof #19. (Contributed by Mario Carneiro, 16-Jul-2014.) |
| ⊢ (𝐴 ∈ ℕ0 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) | ||
| Syntax | cvdwa 16936 | The arithmetic progression function. |
| class AP | ||
| Syntax | cvdwm 16937 | The monochromatic arithmetic progression predicate. |
| class MonoAP | ||
| Syntax | cvdwp 16938 | The polychromatic arithmetic progression predicate. |
| class PolyAP | ||
| Definition | df-vdwap 16939* | Define the arithmetic progression function, which takes as input a length 𝑘, a start point 𝑎, and a step 𝑑 and outputs the set of points in this progression. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ AP = (𝑘 ∈ ℕ0 ↦ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))) | ||
| Definition | df-vdwmc 16940* | Define the "contains a monochromatic AP" predicate. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ MonoAP = {〈𝑘, 𝑓〉 ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (◡𝑓 “ {𝑐})) ≠ ∅} | ||
| Definition | df-vdwpc 16941* | Define the "contains a polychromatic collection of APs" predicate. See vdwpc 16951 for more information. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ PolyAP = {〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)} | ||
| Theorem | vdwapfval 16942* | Define the arithmetic progression function, which takes as input a length 𝑘, a start point 𝑎, and a step 𝑑 and outputs the set of points in this progression. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))) | ||
| Theorem | vdwapf 16943 | The arithmetic progression function is a function. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ) | ||
| Theorem | vdwapval 16944* | Value of the arithmetic progression function. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)))) | ||
| Theorem | vdwapun 16945 | Remove the first element of an arithmetic progression. (Contributed by Mario Carneiro, 11-Sep-2014.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))) | ||
| Theorem | vdwapid1 16946 | The first element of an arithmetic progression. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷)) | ||
| Theorem | vdwap0 16947 | Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘0)𝐷) = ∅) | ||
| Theorem | vdwap1 16948 | Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘1)𝐷) = {𝐴}) | ||
| Theorem | vdwmc 16949* | The predicate " The 〈𝑅, 𝑁〉-coloring 𝐹 contains a monochromatic AP of length 𝐾". (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝑋 ∈ V & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑅) ⇒ ⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) | ||
| Theorem | vdwmc2 16950* | Expand out the definition of an arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝑋 ∈ V & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) | ||
| Theorem | vdwpc 16951* | The predicate " The coloring 𝐹 contains a polychromatic 𝑀-tuple of AP's of length 𝐾". A polychromatic 𝑀-tuple of AP's is a set of AP's with the same base point but different step lengths, such that each individual AP is monochromatic, but the AP's all have mutually distinct colors. (The common basepoint is not required to have the same color as any of the AP's.) (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝑋 ∈ V & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑅) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐽 = (1...𝑀) ⇒ ⊢ (𝜑 → (〈𝑀, 𝐾〉 PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) | ||
| Theorem | vdwlem1 16952* | Lemma for vdw 16965. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑊)⟶𝑅) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐷:(1...𝑀)⟶ℕ) & ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷‘𝑖))(AP‘𝐾)(𝐷‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝐴 + (𝐷‘𝑖)))})) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) & ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘(𝐴 + (𝐷‘𝐼)))) ⇒ ⊢ (𝜑 → (𝐾 + 1) MonoAP 𝐹) | ||
| Theorem | vdwlem2 16953* | Lemma for vdw 16965. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝑅) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑊 + 𝑁))) & ⊢ 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁))) ⇒ ⊢ (𝜑 → (𝐾 MonoAP 𝐺 → 𝐾 MonoAP 𝐹)) | ||
| Theorem | vdwlem3 16954 | Lemma for vdw 16965. (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (1...𝑉)) & ⊢ (𝜑 → 𝐵 ∈ (1...𝑊)) ⇒ ⊢ (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉)))) | ||
| Theorem | vdwlem4 16955* | Lemma for vdw 16965. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) ⇒ ⊢ (𝜑 → 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) | ||
| Theorem | vdwlem5 16956* | Lemma for vdw 16965. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑊)⟶𝑅) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (◡𝐹 “ {𝐺})) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐸:(1...𝑀)⟶ℕ) & ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸‘𝑖))(AP‘𝐾)(𝐸‘𝑖)) ⊆ (◡𝐺 “ {(𝐺‘(𝐵 + (𝐸‘𝑖)))})) & ⊢ 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸‘𝑖)))) & ⊢ (𝜑 → (♯‘ran 𝐽) = 𝑀) & ⊢ 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉 − 𝐷)) − 1))) & ⊢ 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸‘𝑗)) + (𝑊 · 𝐷))) ⇒ ⊢ (𝜑 → 𝑇 ∈ ℕ) | ||
| Theorem | vdwlem6 16957* | Lemma for vdw 16965. (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑊)⟶𝑅) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (◡𝐹 “ {𝐺})) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐸:(1...𝑀)⟶ℕ) & ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸‘𝑖))(AP‘𝐾)(𝐸‘𝑖)) ⊆ (◡𝐺 “ {(𝐺‘(𝐵 + (𝐸‘𝑖)))})) & ⊢ 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸‘𝑖)))) & ⊢ (𝜑 → (♯‘ran 𝐽) = 𝑀) & ⊢ 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉 − 𝐷)) − 1))) & ⊢ 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸‘𝑗)) + (𝑊 · 𝐷))) ⇒ ⊢ (𝜑 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)) | ||
| Theorem | vdwlem7 16958* | Lemma for vdw 16965. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑊)⟶𝑅) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (◡𝐹 “ {𝐺})) ⇒ ⊢ (𝜑 → (〈𝑀, 𝐾〉 PolyAP 𝐺 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))) | ||
| Theorem | vdwlem8 16959* | Lemma for vdw 16965. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...(2 · 𝑊))⟶𝑅) & ⊢ 𝐶 ∈ V & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (◡𝐺 “ {𝐶})) & ⊢ 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑊))) ⇒ ⊢ (𝜑 → 〈1, 𝐾〉 PolyAP 𝐹) | ||
| Theorem | vdwlem9 16960* | Lemma for vdw 16965. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → ∀𝑔 ∈ (𝑅 ↑m (1...𝑊))(〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) & ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → ∀𝑓 ∈ ((𝑅 ↑m (1...𝑊)) ↑m (1...𝑉))𝐾 MonoAP 𝑓) & ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) ⇒ ⊢ (𝜑 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)) | ||
| Theorem | vdwlem10 16961* | Lemma for vdw 16965. Set up secondary induction on 𝑀. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) | ||
| Theorem | vdwlem11 16962* | Lemma for vdw 16965. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(𝐾 + 1) MonoAP 𝑓) | ||
| Theorem | vdwlem12 16963 | Lemma for vdw 16965. 𝐾 = 2 base case of induction. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:(1...((♯‘𝑅) + 1))⟶𝑅) & ⊢ (𝜑 → ¬ 2 MonoAP 𝐹) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | vdwlem13 16964* | Lemma for vdw 16965. Main induction on 𝐾; 𝐾 = 0, 𝐾 = 1 base cases. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) | ||
| Theorem | vdw 16965* | Van der Waerden's theorem. For any finite coloring 𝑅 and integer 𝐾, there is an 𝑁 such that every coloring function from 1...𝑁 to 𝑅 contains a monochromatic arithmetic progression (which written out in full means that there is a color 𝑐 and base, increment values 𝑎, 𝑑 such that all the numbers 𝑎, 𝑎 + 𝑑, ..., 𝑎 + (𝑘 − 1)𝑑 lie in the preimage of {𝑐}, i.e. they are all in 1...𝑁 and 𝑓 evaluated at each one yields 𝑐). (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐})) | ||
| Theorem | vdwnnlem1 16966* | Corollary of vdw 16965, and lemma for vdwnn 16969. If 𝐹 is a coloring of the integers, then there are arbitrarily long monochromatic APs in 𝐹. (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) | ||
| Theorem | vdwnnlem2 16967* | Lemma for vdwnn 16969. The set of all "bad" 𝑘 for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑅) & ⊢ 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})} ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐴 ∈ 𝑆 → 𝐵 ∈ 𝑆)) | ||
| Theorem | vdwnnlem3 16968* | Lemma for vdwnn 16969. (Contributed by Mario Carneiro, 13-Sep-2014.) (Proof shortened by AV, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑅) & ⊢ 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})} & ⊢ (𝜑 → ∀𝑐 ∈ 𝑅 𝑆 ≠ ∅) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | vdwnn 16969* | Van der Waerden's theorem, infinitary version. For any finite coloring 𝐹 of the positive integers, there is a color 𝑐 that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) | ||
| Syntax | cram 16970 | Extend class notation with the Ramsey number function. |
| class Ramsey | ||
| Theorem | ramtlecl 16971* | The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} ⇒ ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) | ||
| Definition | df-ram 16972* | Define the Ramsey number function. The input is a number 𝑚 for the size of the edges of the hypergraph, and a tuple 𝑟 from the finite color set to lower bounds for each color. The Ramsey number (𝑀 Ramsey 𝑅) is the smallest number such that for any set 𝑆 with (𝑀 Ramsey 𝑅) ≤ ♯𝑆 and any coloring 𝐹 of the set of 𝑀-element subsets of 𝑆 (with color set dom 𝑅), there is a color 𝑐 ∈ dom 𝑅 and a subset 𝑥 ⊆ 𝑆 such that 𝑅(𝑐) ≤ ♯𝑥 and all the hyperedges of 𝑥 (that is, subsets of 𝑥 of size 𝑀) have color 𝑐. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, < )) | ||
| Theorem | hashbcval 16973* | Value of the "binomial set", the set of all 𝑁-element subsets of 𝐴. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) | ||
| Theorem | hashbccl 16974* | The binomial set is a finite set. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) ∈ Fin) | ||
| Theorem | hashbcss 16975* | Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁)) | ||
| Theorem | hashbc0 16976* | The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {∅}) | ||
| Theorem | hashbc2 16977* | The size of the binomial set is the binomial coefficient. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘(𝐴𝐶𝑁)) = ((♯‘𝐴)C𝑁)) | ||
| Theorem | 0hashbc 16978* | There are no subsets of the empty set with size greater than zero. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ (𝑁 ∈ ℕ → (∅𝐶𝑁) = ∅) | ||
| Theorem | ramval 16979* | The value of the Ramsey number function. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < )) | ||
| Theorem | ramcl2lem 16980* | Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) | ||
| Theorem | ramtcl 16981* | The Ramsey number has the Ramsey number property if any number does. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ 𝑇 ↔ 𝑇 ≠ ∅)) | ||
| Theorem | ramtcl2 16982* | The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ 𝑇 ≠ ∅)) | ||
| Theorem | ramtub 16983* | The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝐴 ∈ 𝑇) → (𝑀 Ramsey 𝐹) ≤ 𝐴) | ||
| Theorem | ramub 16984* | The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) ⇒ ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁) | ||
| Theorem | ramub2 16985* | It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ 𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) ⇒ ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁) | ||
| Theorem | rami 16986* | The defining property of a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆)) & ⊢ (𝜑 → 𝐺:(𝑆𝐶𝑀)⟶𝑅) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}))) | ||
| Theorem | ramcl2 16987 | The Ramsey number is either a nonnegative integer or plus infinity. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞})) | ||
| Theorem | ramxrcl 16988 | The Ramsey number is an extended real number. (This theorem does not imply Ramsey's theorem, unlike ramcl 17000.) (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℝ*) | ||
| Theorem | ramubcl 16989 | If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0) | ||
| Theorem | ramlb 16990* | Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐺:((1...𝑁)𝐶𝑀)⟶𝑅) & ⊢ ((𝜑 ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹‘𝑐))) ⇒ ⊢ (𝜑 → 𝑁 < (𝑀 Ramsey 𝐹)) | ||
| Theorem | 0ram 16991* | The Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) | ||
| Theorem | 0ram2 16992 | The Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) | ||
| Theorem | ram0 16993 | The Ramsey number when 𝑅 = ∅. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀) | ||
| Theorem | 0ramcl 16994 | Lemma for ramcl 17000: Existence of the Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0) | ||
| Theorem | ramz2 16995 | The Ramsey number when 𝐹 has value zero for some color 𝐶. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0) | ||
| Theorem | ramz 16996 | The Ramsey number when 𝐹 is the zero function. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0) | ||
| Theorem | ramub1lem1 16997* | Lemma for ramub1 16999. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ) & ⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) & ⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) & ⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0) & ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1)) & ⊢ (𝜑 → 𝐾:(𝑆𝐶𝑀)⟶𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋}))) & ⊢ (𝜑 → 𝐷 ∈ 𝑅) & ⊢ (𝜑 → 𝑊 ⊆ (𝑆 ∖ {𝑋})) & ⊢ (𝜑 → (𝐺‘𝐷) ≤ (♯‘𝑊)) & ⊢ (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝐷})) & ⊢ (𝜑 → 𝐸 ∈ 𝑅) & ⊢ (𝜑 → 𝑉 ⊆ 𝑊) & ⊢ (𝜑 → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) ≤ (♯‘𝑉)) & ⊢ (𝜑 → (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) | ||
| Theorem | ramub1lem2 16998* | Lemma for ramub1 16999. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ) & ⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) & ⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) & ⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0) & ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1)) & ⊢ (𝜑 → 𝐾:(𝑆𝐶𝑀)⟶𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋}))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐}))) | ||
| Theorem | ramub1 16999* | Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ) & ⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) & ⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) & ⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1)) | ||
| Theorem | ramcl 17000 | Ramsey's theorem: the Ramsey number is an integer for every finite coloring and set of upper bounds. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℕ0) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |