HomeHome Metamath Proof Explorer
Theorem List (p. 170 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 16901-17000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfveqprc 16901 Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 20727. (Contributed by AV, 31-Oct-2024.)
(𝐸‘∅) = ∅    &   𝑌 = (𝐹𝑋)       𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑌))
 
Theoremoveqprc 16902 Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like resvlem 31539. (Contributed by AV, 31-Oct-2024.)
(𝐸‘∅) = ∅    &   𝑍 = (𝑋𝑂𝑌)    &   Rel dom 𝑂       𝑋 ∈ V → (𝐸𝑋) = (𝐸𝑍))
 
7.1.1.4  Structure component indices

The structure component index extractor ndx, defined in this subsection, is used to get the numeric argument from a defined structure component extractor such as df-base 16922 (see ndxarg 16906). For each defined structure component extractor, there should be a corresponding specific theorem providing its index, like basendx 16930. The usage of these theorems, however, is discouraged since the particular value for the index is an implementation detail. It is generally sufficient to work with (Base‘ndx) instead of the hard-coded index value, and use theorems such as baseid 16924 and basendxnplusgndx 17001.

The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint (for example in proofs such as cznabel 45523, based on setsnid 16919) or even ordered (in proofs such as lmodstr 17044). The requirement that the indices are distinct is necessary for sets of ordered pairs to be extensible structures, whereas the ordering allows for proofs avoiding the usage of quadradically many inequalities (compare cnfldfun 20618 with cnfldfunALT 20619).

As for the inequalities, it is recommended to provide them explicitly as theorems like basendxnplusgndx 17001, whenever they are required. Since these theorems use discouraged slot theorems, they should be placed near the definition of a slot (within the same subsection), so that the range of usages of discouraged theorems is tightly limited. Although there could be quadradically many of them in the total number of indices, much less are actually available (and not much more are expected).

As for the ordering, there are some theorems like basendxltplusgndx 17000 providing the less-than relationship between two indices. These theorems are also proved by discouraged theorems, so they should be placed near the definition of a slot (within the same subsection), too. However, since such theorems are rarely used (in structure building theorems *str like rngstr 17017), it is not recommended to provide explicit theorems for all of them, but to use the (discouraged) *ndx theorems as in lmodstr 17044. Therefore, *str theorems generally depend on the hard-coded values of the indices.

 
Syntaxcnx 16903 Extend class notation with the structure component index extractor.
class ndx
 
Definitiondf-ndx 16904 Define the structure component index extractor. See Theorem ndxarg 16906 to understand its purpose. The restriction to ensures that ndx is a set. The restriction to some set is necessary since I is a proper class. In principle, we could have chosen or (if we revise all structure component definitions such as df-base 16922) another set such as the set of finite ordinals ω (df-om 7722). (Contributed by NM, 4-Sep-2011.)
ndx = ( I ↾ ℕ)
 
Theoremwunndx 16905 Closure of the index extractor in an infinite weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.)
(𝜑𝑈 ∈ WUni)    &   (𝜑 → ω ∈ 𝑈)       (𝜑 → ndx ∈ 𝑈)
 
Theoremndxarg 16906 Get the numeric argument from a defined structure component extractor such as df-base 16922. (Contributed by Mario Carneiro, 6-Oct-2013.)
𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ       (𝐸‘ndx) = 𝑁
 
Theoremndxid 16907 A structure component extractor is defined by its own index. This theorem, together with strfv 16914 below, is useful for avoiding direct reference to the hard-coded numeric index in component extractor definitions, such as the 1 in df-base 16922 and the 10 in df-ple 16991, making it easier to change should the need arise.

For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {⟨(Base‘ndx), 𝐵⟩, ⟨(le‘ndx), 𝐿⟩} rather than {⟨1, 𝐵⟩, 10, 𝐿⟩}. The latter, while shorter to state, requires revision if we later change 10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.)

𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ       𝐸 = Slot (𝐸‘ndx)
 
Theoremstrndxid 16908 The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.) (New usage is discouraged.) Use strfvnd 16895 directly with 𝑁 set to (𝐸‘ndx) if possible.
(𝜑𝑆𝑉)    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ       (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸𝑆))
 
Theoremsetsidvald 16909 Value of the structure replacement function, deduction version.

Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.)

𝐸 = Slot 𝑁    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑𝑁 ∈ dom 𝑆)       (𝜑𝑆 = (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩))
 
TheoremsetsidvaldOLD 16910 Obsolete version of setsidvald 16909 as of 17-Oct-2024. (Contributed by AV, 14-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → (𝐸‘ndx) ∈ dom 𝑆)       (𝜑𝑆 = (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩))
 
Theoremstrfvd 16911 Deduction version of strfv 16914. (Contributed by Mario Carneiro, 15-Nov-2014.)
𝐸 = Slot (𝐸‘ndx)    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)       (𝜑𝐶 = (𝐸𝑆))
 
Theoremstrfv2d 16912 Deduction version of strfv2 16913. (Contributed by Mario Carneiro, 30-Apr-2015.)
𝐸 = Slot (𝐸‘ndx)    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)    &   (𝜑𝐶𝑊)       (𝜑𝐶 = (𝐸𝑆))
 
Theoremstrfv2 16913 A variation on strfv 16914 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.)
𝑆 ∈ V    &   Fun 𝑆    &   𝐸 = Slot (𝐸‘ndx)    &   ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆       (𝐶𝑉𝐶 = (𝐸𝑆))
 
Theoremstrfv 16914 Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 18040) with a component extractor 𝐸 (such as the base set extractor df-base 16922). By virtue of ndxid 16907, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝑆 Struct 𝑋    &   𝐸 = Slot (𝐸‘ndx)    &   {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆       (𝐶𝑉𝐶 = (𝐸𝑆))
 
Theoremstrfv3 16915 Variant on strfv 16914 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.)
(𝜑𝑈 = 𝑆)    &   𝑆 Struct 𝑋    &   𝐸 = Slot (𝐸‘ndx)    &   {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆    &   (𝜑𝐶𝑉)    &   𝐴 = (𝐸𝑈)       (𝜑𝐴 = 𝐶)
 
Theoremstrssd 16916 Deduction version of strss 16917. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐸 = Slot (𝐸‘ndx)    &   (𝜑𝑇𝑉)    &   (𝜑 → Fun 𝑇)    &   (𝜑𝑆𝑇)    &   (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)       (𝜑 → (𝐸𝑇) = (𝐸𝑆))
 
Theoremstrss 16917 Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.)
𝑇 ∈ V    &   Fun 𝑇    &   𝑆𝑇    &   𝐸 = Slot (𝐸‘ndx)    &   ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆       (𝐸𝑇) = (𝐸𝑆)
 
Theoremsetsid 16918 Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐸 = Slot (𝐸‘ndx)       ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))
 
Theoremsetsnid 16919 Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.)
𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ 𝐷       (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))
 
TheoremsetsnidOLD 16920 Obsolete proof of setsnid 16919 as of 7-Nov-2024. Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ 𝐷       (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩))
 
7.1.1.5  Base sets
 
Syntaxcbs 16921 Extend class notation with the class of all base set extractors.
class Base
 
Definitiondf-base 16922 Define the base set (also called underlying set, ground set, carrier set, or carrier) extractor for extensible structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form baseid 16924 instead. (New usage is discouraged.)
Base = Slot 1
 
Theorembaseval 16923 Value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.)
𝐾 ∈ V       (Base‘𝐾) = (𝐾‘1)
 
Theorembaseid 16924 Utility theorem: index-independent form of df-base 16922. (Contributed by NM, 20-Oct-2012.)
Base = Slot (Base‘ndx)
 
Theorembasfn 16925 The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.)
Base Fn V
 
Theorembase0 16926 The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.)
∅ = (Base‘∅)
 
Theoremelbasfv 16927 Utility theorem: reverse closure for any structure defined as a function. (Contributed by Stefan O'Rear, 24-Aug-2015.)
𝑆 = (𝐹𝑍)    &   𝐵 = (Base‘𝑆)       (𝑋𝐵𝑍 ∈ V)
 
Theoremelbasov 16928 Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.)
Rel dom 𝑂    &   𝑆 = (𝑋𝑂𝑌)    &   𝐵 = (Base‘𝑆)       (𝐴𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
 
Theoremstrov2rcl 16929 Partial reverse closure for any structure defined as a two-argument function. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 2-Dec-2019.)
𝑆 = (𝐼𝐹𝑅)    &   𝐵 = (Base‘𝑆)    &   Rel dom 𝐹       (𝑋𝐵𝐼 ∈ V)
 
Theorembasendx 16930 Index value of the base set extractor. (Contributed by Mario Carneiro, 2-Aug-2013.) Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail, see section header comment mmtheorems.html#cnx for more information. (New usage is discouraged.)
(Base‘ndx) = 1
 
Theorembasendxnn 16931 The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.)
(Base‘ndx) ∈ ℕ
 
TheorembasendxnnOLD 16932 Obsolete proof of basendxnn 16931 as of 13-Oct-2024. (Contributed by AV, 23-Sep-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(Base‘ndx) ∈ ℕ
 
Theorembasndxelwund 16933 The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun 16941. (Contributed by AV, 27-Mar-2020.) (Revised by AV, 17-Oct-2024.)
(𝜑𝑈 ∈ WUni)    &   (𝜑 → ω ∈ 𝑈)       (𝜑 → (Base‘ndx) ∈ 𝑈)
 
Theorembasprssdmsets 16934 The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
(𝜑𝑆 Struct 𝑋)    &   (𝜑𝐼𝑈)    &   (𝜑𝐸𝑊)    &   (𝜑 → (Base‘ndx) ∈ dom 𝑆)       (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))
 
Theoremopelstrbas 16935 The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
(𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (Base‘𝑆))
 
Theorem1strstr 16936 A constructed one-slot structure. Depending on hard-coded index. Use 1strstr1 16937 instead. (Contributed by AV, 27-Mar-2020.) (New usage is discouraged.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       𝐺 Struct ⟨1, 1⟩
 
Theorem1strstr1 16937 A constructed one-slot structure. (Contributed by AV, 15-Nov-2024.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       𝐺 Struct ⟨(Base‘ndx), (Base‘ndx)⟩
 
Theorem1strbas 16938 The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 15-Nov-2024.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐵 = (Base‘𝐺))
 
Theorem1strbasOLD 16939 Obsolete proof of 1strbas 16938 as of 15-Nov-2024. The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐵 = (Base‘𝐺))
 
Theorem1strwunbndx 16940 A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}    &   (𝜑𝑈 ∈ WUni)    &   (𝜑 → (Base‘ndx) ∈ 𝑈)       ((𝜑𝐵𝑈) → 𝐺𝑈)
 
Theorem1strwun 16941 A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 17-Oct-2024.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}    &   (𝜑𝑈 ∈ WUni)    &   (𝜑 → ω ∈ 𝑈)       ((𝜑𝐵𝑈) → 𝐺𝑈)
 
Theorem1strwunOLD 16942 Obsolete version of 1strwun 16941 as of 17-Oct-2024. A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}    &   (𝜑𝑈 ∈ WUni)    &   (𝜑 → ω ∈ 𝑈)       ((𝜑𝐵𝑈) → 𝐺𝑈)
 
Theorem2strstr 16943 A constructed two-slot structure. Depending on hard-coded indices. Use 2strstr1 16946 instead. (Contributed by Mario Carneiro, 29-Aug-2015.) (New usage is discouraged.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       𝐺 Struct ⟨1, 𝑁
 
Theorem2strbas 16944 The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) Use the index-independent version 2strbas1 16948 instead. (New usage is discouraged.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       (𝐵𝑉𝐵 = (Base‘𝐺))
 
Theorem2strop 16945 The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) Use the index-independent version 2strop1 16949 instead. (New usage is discouraged.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ( +𝑉+ = (𝐸𝐺))
 
Theorem2strstr1 16946 A constructed two-slot structure. Version of 2strstr 16943 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Proof shortened by AV, 17-Oct-2024.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       𝐺 Struct ⟨(Base‘ndx), 𝑁
 
Theorem2strstr1OLD 16947 Obsolete version of 2strstr1 16946 as of 27-Oct-2024. A constructed two-slot structure. Version of 2strstr 16943 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       𝐺 Struct ⟨(Base‘ndx), 𝑁
 
Theorem2strbas1 16948 The base set of a constructed two-slot structure. Version of 2strbas 16944 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       (𝐵𝑉𝐵 = (Base‘𝐺))
 
Theorem2strop1 16949 The other slot of a constructed two-slot structure. Version of 2strop 16945 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ    &   𝐸 = Slot 𝑁       ( +𝑉+ = (𝐸𝐺))
 
7.1.1.6  Base set restrictions
 
Syntaxcress 16950 Extend class notation with the extensible structure builder restriction operator.
class s
 
Definitiondf-ress 16951* Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range (like Ring), defining a function using the base set and applying that (like TopGrp), or explicitly truncating the slot before use (like MetSp).

(Credit for this operator goes to Mario Carneiro.)

See ressbas 16956 for the altered base set, and resseqnbas 16960 (subrg0 20040, ressplusg 17009, subrg1 20043, ressmulr 17026) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.)

s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
 
Theoremreldmress 16952 The structure restriction is a proper operator, so it can be used with ovprc1 7323. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Rel dom ↾s
 
Theoremressval 16953 Value of structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
 
Theoremressid2 16954 General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)
 
Theoremressval2 16955 Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
 
Theoremressbas 16956 Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))
 
TheoremressbasOLD 16957 Obsolete proof of ressbas 16956 as of 7-Nov-2024. Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))
 
Theoremressbas2 16958 Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       (𝐴𝐵𝐴 = (Base‘𝑅))
 
Theoremressbasss 16959 The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       (Base‘𝑅) ⊆ 𝐵
 
Theoremresseqnbas 16960 The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
𝑅 = (𝑊s 𝐴)    &   𝐶 = (𝐸𝑊)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ (Base‘ndx)       (𝐴𝑉𝐶 = (𝐸𝑅))
 
TheoremresslemOLD 16961 Obsolete version of resseqnbas 16960 as of 21-Oct-2024. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑅 = (𝑊s 𝐴)    &   𝐶 = (𝐸𝑊)    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   1 < 𝑁       (𝐴𝑉𝐶 = (𝐸𝑅))
 
Theoremress0 16962 All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
(∅ ↾s 𝐴) = ∅
 
Theoremressid 16963 Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
𝐵 = (Base‘𝑊)       (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
 
Theoremressinbas 16964 Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
𝐵 = (Base‘𝑊)       (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
 
Theoremressval3d 16965 Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (Proof shortened by AV, 17-Oct-2024.)
𝑅 = (𝑆s 𝐴)    &   𝐵 = (Base‘𝑆)    &   𝐸 = (Base‘ndx)    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑𝐸 ∈ dom 𝑆)    &   (𝜑𝐴𝐵)       (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
 
Theoremressval3dOLD 16966 Obsolete version of ressval3d 16965 as of 17-Oct-2024. Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑅 = (𝑆s 𝐴)    &   𝐵 = (Base‘𝑆)    &   𝐸 = (Base‘ndx)    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑𝐸 ∈ dom 𝑆)    &   (𝜑𝐴𝐵)       (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
 
Theoremressress 16967 Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
 
Theoremressabs 16968 Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.)
((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
 
Theoremwunress 16969 Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 28-Oct-2024.)
(𝜑𝑈 ∈ WUni)    &   (𝜑 → ω ∈ 𝑈)    &   (𝜑𝑊𝑈)       (𝜑 → (𝑊s 𝐴) ∈ 𝑈)
 
TheoremwunressOLD 16970 Obsolete proof of wunress 16969 as of 28-Oct-2024. Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝑈 ∈ WUni)    &   (𝜑 → ω ∈ 𝑈)    &   (𝜑𝑊𝑈)       (𝜑 → (𝑊s 𝐴) ∈ 𝑈)
 
7.1.2  Slot definitions
 
Syntaxcplusg 16971 Extend class notation with group (addition) operation.
class +g
 
Syntaxcmulr 16972 Extend class notation with ring multiplication.
class .r
 
Syntaxcstv 16973 Extend class notation with involution.
class *𝑟
 
Syntaxcsca 16974 Extend class notation with scalar field.
class Scalar
 
Syntaxcvsca 16975 Extend class notation with scalar product.
class ·𝑠
 
Syntaxcip 16976 Extend class notation with Hermitian form (inner product).
class ·𝑖
 
Syntaxcts 16977 Extend class notation with the topology component of a topological space.
class TopSet
 
Syntaxcple 16978 Extend class notation with "less than or equal to" for posets.
class le
 
Syntaxcoc 16979 Extend class notation with the class of orthocomplementation extractors.
class oc
 
Syntaxcds 16980 Extend class notation with the metric space distance function.
class dist
 
Syntaxcunif 16981 Extend class notation with the uniform structure.
class UnifSet
 
Syntaxchom 16982 Extend class notation with the hom-set structure.
class Hom
 
Syntaxcco 16983 Extend class notation with the composition operation.
class comp
 
Definitiondf-plusg 16984 Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form plusgid 16998 instead. (New usage is discouraged.)
+g = Slot 2
 
Definitiondf-mulr 16985 Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form mulrid 17013 instead. (New usage is discouraged.)
.r = Slot 3
 
Definitiondf-starv 16986 Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form starvid 17022 instead. (New usage is discouraged.)
*𝑟 = Slot 4
 
Definitiondf-sca 16987 Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form scaid 17034 instead. (New usage is discouraged.)
Scalar = Slot 5
 
Definitiondf-vsca 16988 Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form vscaid 17039 instead. (New usage is discouraged.)
·𝑠 = Slot 6
 
Definitiondf-ip 16989 Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form ipid 17050 instead. (New usage is discouraged.)
·𝑖 = Slot 8
 
Definitiondf-tset 16990 Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form tsetid 17072 instead. (New usage is discouraged.)
TopSet = Slot 9
 
Definitiondf-ple 16991 Define "less than or equal to" ordering extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) Use its index-independent form pleid 17086 instead. (New usage is discouraged.)
le = Slot 10
 
Definitiondf-ocomp 16992 Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form ocid 17101 instead. (New usage is discouraged.)
oc = Slot 11
 
Definitiondf-ds 16993 Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form dsid 17105 instead. (New usage is discouraged.)
dist = Slot 12
 
Definitiondf-unif 16994 Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.) Use its index-independent form unifid 17115 instead. (New usage is discouraged.)
UnifSet = Slot 13
 
Definitiondf-hom 16995 Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form homid 17131 instead. (New usage is discouraged.)
Hom = Slot 14
 
Definitiondf-cco 16996 Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form ccoid 17133 instead. (New usage is discouraged.)
comp = Slot 15
 
Theoremplusgndx 16997 Index value of the df-plusg 16984 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.)
(+g‘ndx) = 2
 
Theoremplusgid 16998 Utility theorem: index-independent form of df-plusg 16984. (Contributed by NM, 20-Oct-2012.)
+g = Slot (+g‘ndx)
 
Theoremplusgndxnn 16999 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.)
(+g‘ndx) ∈ ℕ
 
Theorembasendxltplusgndx 17000 The index of the slot for the base set is less then the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.)
(Base‘ndx) < (+g‘ndx)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >