| Metamath
Proof Explorer Theorem List (p. 170 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | vdwapfval 16901* | Define the arithmetic progression function, which takes as input a length 𝑘, a start point 𝑎, and a step 𝑑 and outputs the set of points in this progression. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))) | ||
| Theorem | vdwapf 16902 | The arithmetic progression function is a function. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ) | ||
| Theorem | vdwapval 16903* | Value of the arithmetic progression function. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)))) | ||
| Theorem | vdwapun 16904 | Remove the first element of an arithmetic progression. (Contributed by Mario Carneiro, 11-Sep-2014.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))) | ||
| Theorem | vdwapid1 16905 | The first element of an arithmetic progression. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷)) | ||
| Theorem | vdwap0 16906 | Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘0)𝐷) = ∅) | ||
| Theorem | vdwap1 16907 | Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘1)𝐷) = {𝐴}) | ||
| Theorem | vdwmc 16908* | The predicate " The 〈𝑅, 𝑁〉-coloring 𝐹 contains a monochromatic AP of length 𝐾". (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝑋 ∈ V & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑅) ⇒ ⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) | ||
| Theorem | vdwmc2 16909* | Expand out the definition of an arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝑋 ∈ V & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) | ||
| Theorem | vdwpc 16910* | The predicate " The coloring 𝐹 contains a polychromatic 𝑀-tuple of AP's of length 𝐾". A polychromatic 𝑀-tuple of AP's is a set of AP's with the same base point but different step lengths, such that each individual AP is monochromatic, but the AP's all have mutually distinct colors. (The common basepoint is not required to have the same color as any of the AP's.) (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝑋 ∈ V & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑅) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐽 = (1...𝑀) ⇒ ⊢ (𝜑 → (〈𝑀, 𝐾〉 PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖 ∈ 𝐽 ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ 𝐽 ↦ (𝐹‘(𝑎 + (𝑑‘𝑖))))) = 𝑀))) | ||
| Theorem | vdwlem1 16911* | Lemma for vdw 16924. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑊)⟶𝑅) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐷:(1...𝑀)⟶ℕ) & ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷‘𝑖))(AP‘𝐾)(𝐷‘𝑖)) ⊆ (◡𝐹 “ {(𝐹‘(𝐴 + (𝐷‘𝑖)))})) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) & ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘(𝐴 + (𝐷‘𝐼)))) ⇒ ⊢ (𝜑 → (𝐾 + 1) MonoAP 𝐹) | ||
| Theorem | vdwlem2 16912* | Lemma for vdw 16924. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝑅) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑊 + 𝑁))) & ⊢ 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁))) ⇒ ⊢ (𝜑 → (𝐾 MonoAP 𝐺 → 𝐾 MonoAP 𝐹)) | ||
| Theorem | vdwlem3 16913 | Lemma for vdw 16924. (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (1...𝑉)) & ⊢ (𝜑 → 𝐵 ∈ (1...𝑊)) ⇒ ⊢ (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉)))) | ||
| Theorem | vdwlem4 16914* | Lemma for vdw 16924. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) ⇒ ⊢ (𝜑 → 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) | ||
| Theorem | vdwlem5 16915* | Lemma for vdw 16924. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑊)⟶𝑅) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (◡𝐹 “ {𝐺})) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐸:(1...𝑀)⟶ℕ) & ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸‘𝑖))(AP‘𝐾)(𝐸‘𝑖)) ⊆ (◡𝐺 “ {(𝐺‘(𝐵 + (𝐸‘𝑖)))})) & ⊢ 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸‘𝑖)))) & ⊢ (𝜑 → (♯‘ran 𝐽) = 𝑀) & ⊢ 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉 − 𝐷)) − 1))) & ⊢ 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸‘𝑗)) + (𝑊 · 𝐷))) ⇒ ⊢ (𝜑 → 𝑇 ∈ ℕ) | ||
| Theorem | vdwlem6 16916* | Lemma for vdw 16924. (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑊)⟶𝑅) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (◡𝐹 “ {𝐺})) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐸:(1...𝑀)⟶ℕ) & ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸‘𝑖))(AP‘𝐾)(𝐸‘𝑖)) ⊆ (◡𝐺 “ {(𝐺‘(𝐵 + (𝐸‘𝑖)))})) & ⊢ 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸‘𝑖)))) & ⊢ (𝜑 → (♯‘ran 𝐽) = 𝑀) & ⊢ 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉 − 𝐷)) − 1))) & ⊢ 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸‘𝑗)) + (𝑊 · 𝐷))) ⇒ ⊢ (𝜑 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)) | ||
| Theorem | vdwlem7 16917* | Lemma for vdw 16924. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑊)⟶𝑅) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (◡𝐹 “ {𝐺})) ⇒ ⊢ (𝜑 → (〈𝑀, 𝐾〉 PolyAP 𝐺 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))) | ||
| Theorem | vdwlem8 16918* | Lemma for vdw 16924. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...(2 · 𝑊))⟶𝑅) & ⊢ 𝐶 ∈ V & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (◡𝐺 “ {𝐶})) & ⊢ 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑊))) ⇒ ⊢ (𝜑 → 〈1, 𝐾〉 PolyAP 𝐹) | ||
| Theorem | vdwlem9 16919* | Lemma for vdw 16924. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ ℕ) & ⊢ (𝜑 → ∀𝑔 ∈ (𝑅 ↑m (1...𝑊))(〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) & ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → ∀𝑓 ∈ ((𝑅 ↑m (1...𝑊)) ↑m (1...𝑉))𝐾 MonoAP 𝑓) & ⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) ⇒ ⊢ (𝜑 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)) | ||
| Theorem | vdwlem10 16920* | Lemma for vdw 16924. Set up secondary induction on 𝑀. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈𝑀, 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) | ||
| Theorem | vdwlem11 16921* | Lemma for vdw 16924. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(𝐾 + 1) MonoAP 𝑓) | ||
| Theorem | vdwlem12 16922 | Lemma for vdw 16924. 𝐾 = 2 base case of induction. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:(1...((♯‘𝑅) + 1))⟶𝑅) & ⊢ (𝜑 → ¬ 2 MonoAP 𝐹) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | vdwlem13 16923* | Lemma for vdw 16924. Main induction on 𝐾; 𝐾 = 0, 𝐾 = 1 base cases. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) | ||
| Theorem | vdw 16924* | Van der Waerden's theorem. For any finite coloring 𝑅 and integer 𝐾, there is an 𝑁 such that every coloring function from 1...𝑁 to 𝑅 contains a monochromatic arithmetic progression (which written out in full means that there is a color 𝑐 and base, increment values 𝑎, 𝑑 such that all the numbers 𝑎, 𝑎 + 𝑑, ..., 𝑎 + (𝑘 − 1)𝑑 lie in the preimage of {𝑐}, i.e. they are all in 1...𝑁 and 𝑓 evaluated at each one yields 𝑐). (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐})) | ||
| Theorem | vdwnnlem1 16925* | Corollary of vdw 16924, and lemma for vdwnn 16928. If 𝐹 is a coloring of the integers, then there are arbitrarily long monochromatic APs in 𝐹. (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ 𝐾 ∈ ℕ0) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) | ||
| Theorem | vdwnnlem2 16926* | Lemma for vdwnn 16928. The set of all "bad" 𝑘 for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑅) & ⊢ 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})} ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐴 ∈ 𝑆 → 𝐵 ∈ 𝑆)) | ||
| Theorem | vdwnnlem3 16927* | Lemma for vdwnn 16928. (Contributed by Mario Carneiro, 13-Sep-2014.) (Proof shortened by AV, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑅) & ⊢ 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})} & ⊢ (𝜑 → ∀𝑐 ∈ 𝑅 𝑆 ≠ ∅) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | vdwnn 16928* | Van der Waerden's theorem, infinitary version. For any finite coloring 𝐹 of the positive integers, there is a color 𝑐 that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014.) |
| ⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) | ||
| Syntax | cram 16929 | Extend class notation with the Ramsey number function. |
| class Ramsey | ||
| Theorem | ramtlecl 16930* | The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → 𝜑)} ⇒ ⊢ (𝑀 ∈ 𝑇 → (ℤ≥‘𝑀) ⊆ 𝑇) | ||
| Definition | df-ram 16931* | Define the Ramsey number function. The input is a number 𝑚 for the size of the edges of the hypergraph, and a tuple 𝑟 from the finite color set to lower bounds for each color. The Ramsey number (𝑀 Ramsey 𝑅) is the smallest number such that for any set 𝑆 with (𝑀 Ramsey 𝑅) ≤ ♯𝑆 and any coloring 𝐹 of the set of 𝑀-element subsets of 𝑆 (with color set dom 𝑅), there is a color 𝑐 ∈ dom 𝑅 and a subset 𝑥 ⊆ 𝑆 such that 𝑅(𝑐) ≤ ♯𝑥 and all the hyperedges of 𝑥 (that is, subsets of 𝑥 of size 𝑀) have color 𝑐. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, < )) | ||
| Theorem | hashbcval 16932* | Value of the "binomial set", the set of all 𝑁-element subsets of 𝐴. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) | ||
| Theorem | hashbccl 16933* | The binomial set is a finite set. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) ∈ Fin) | ||
| Theorem | hashbcss 16934* | Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁)) | ||
| Theorem | hashbc0 16935* | The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {∅}) | ||
| Theorem | hashbc2 16936* | The size of the binomial set is the binomial coefficient. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘(𝐴𝐶𝑁)) = ((♯‘𝐴)C𝑁)) | ||
| Theorem | 0hashbc 16937* | There are no subsets of the empty set with size greater than zero. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ (𝑁 ∈ ℕ → (∅𝐶𝑁) = ∅) | ||
| Theorem | ramval 16938* | The value of the Ramsey number function. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < )) | ||
| Theorem | ramcl2lem 16939* | Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) | ||
| Theorem | ramtcl 16940* | The Ramsey number has the Ramsey number property if any number does. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ 𝑇 ↔ 𝑇 ≠ ∅)) | ||
| Theorem | ramtcl2 16941* | The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ↔ 𝑇 ≠ ∅)) | ||
| Theorem | ramtub 16942* | The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} ⇒ ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝐴 ∈ 𝑇) → (𝑀 Ramsey 𝐹) ≤ 𝐴) | ||
| Theorem | ramub 16943* | The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ (𝑁 ≤ (♯‘𝑠) ∧ 𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) ⇒ ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁) | ||
| Theorem | ramub2 16944* | It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ ((♯‘𝑠) = 𝑁 ∧ 𝑓:(𝑠𝐶𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐}))) ⇒ ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ 𝑁) | ||
| Theorem | rami 16945* | The defining property of a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ (♯‘𝑆)) & ⊢ (𝜑 → 𝐺:(𝑆𝐶𝑀)⟶𝑅) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}))) | ||
| Theorem | ramcl2 16946 | The Ramsey number is either a nonnegative integer or plus infinity. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞})) | ||
| Theorem | ramxrcl 16947 | The Ramsey number is an extended real number. (This theorem does not imply Ramsey's theorem, unlike ramcl 16959.) (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℝ*) | ||
| Theorem | ramubcl 16948 | If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0) | ||
| Theorem | ramlb 16949* | Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐺:((1...𝑁)𝐶𝑀)⟶𝑅) & ⊢ ((𝜑 ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹‘𝑐))) ⇒ ⊢ (𝜑 → 𝑁 < (𝑀 Ramsey 𝐹)) | ||
| Theorem | 0ram 16950* | The Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) | ||
| Theorem | 0ram2 16951 | The Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ ((𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) = sup(ran 𝐹, ℝ, < )) | ||
| Theorem | ram0 16952 | The Ramsey number when 𝑅 = ∅. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀) | ||
| Theorem | 0ramcl 16953 | Lemma for ramcl 16959: Existence of the Ramsey number when 𝑀 = 0. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (0 Ramsey 𝐹) ∈ ℕ0) | ||
| Theorem | ramz2 16954 | The Ramsey number when 𝐹 has value zero for some color 𝐶. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ (((𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐶 ∈ 𝑅 ∧ (𝐹‘𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0) | ||
| Theorem | ramz 16955 | The Ramsey number when 𝐹 is the zero function. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0) | ||
| Theorem | ramub1lem1 16956* | Lemma for ramub1 16958. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ) & ⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) & ⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) & ⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0) & ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1)) & ⊢ (𝜑 → 𝐾:(𝑆𝐶𝑀)⟶𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋}))) & ⊢ (𝜑 → 𝐷 ∈ 𝑅) & ⊢ (𝜑 → 𝑊 ⊆ (𝑆 ∖ {𝑋})) & ⊢ (𝜑 → (𝐺‘𝐷) ≤ (♯‘𝑊)) & ⊢ (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝐷})) & ⊢ (𝜑 → 𝐸 ∈ 𝑅) & ⊢ (𝜑 → 𝑉 ⊆ 𝑊) & ⊢ (𝜑 → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) ≤ (♯‘𝑉)) & ⊢ (𝜑 → (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) | ||
| Theorem | ramub1lem2 16957* | Lemma for ramub1 16958. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ) & ⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) & ⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) & ⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0) & ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1)) & ⊢ (𝜑 → 𝐾:(𝑆𝐶𝑀)⟶𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋}))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐}))) | ||
| Theorem | ramub1 16958* | Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑅⟶ℕ) & ⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) & ⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) & ⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1)) | ||
| Theorem | ramcl 16959 | Ramsey's theorem: the Ramsey number is an integer for every finite coloring and set of upper bounds. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℕ0) | ||
| Theorem | ramsey 16960* | Ramsey's theorem with the definition of Ramsey (df-ram 16931) eliminated. If 𝑀 is an integer, 𝑅 is a specified finite set of colors, and 𝐹:𝑅⟶ℕ0 is a set of lower bounds for each color, then there is an 𝑛 such that for every set 𝑠 of size greater than 𝑛 and every coloring 𝑓 of the set (𝑠𝐶𝑀) of all 𝑀-element subsets of 𝑠, there is a color 𝑐 and a subset 𝑥 ⊆ 𝑠 such that 𝑥 is larger than 𝐹(𝑐) and the 𝑀 -element subsets of 𝑥 are monochromatic with color 𝑐. This is the hypergraph version of Ramsey's theorem; the version for simple graphs is the case 𝑀 = 2. This is Metamath 100 proof #31. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → ∃𝑛 ∈ ℕ0 ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))) | ||
According to Wikipedia "Primorial", https://en.wikipedia.org/wiki/Primorial (28-Aug-2020): "In mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying [all] positive integers [less than or equal to a given number], the function only multiplies [the] prime numbers [less than or equal to the given number]. The name "primorial", coined by Harvey Dubner, draws an analogy to primes similar to the way the name "factorial" relates to factors." | ||
| Syntax | cprmo 16961 | Extend class notation to include the primorial of nonnegative integers. |
| class #p | ||
| Definition | df-prmo 16962* |
Define the primorial function on nonnegative integers as the product of
all prime numbers less than or equal to the integer. For example,
(#p‘10) = 2 · 3 · 5
· 7 = 210 (see ex-prmo 30421).
In the literature, the primorial function is written as a postscript hash: 6# = 30. In contrast to prmorcht 27104, where the primorial function is defined by using the sequence builder (𝑃 = seq1( · , 𝐹)), the more specialized definition of a product of a series is used here. (Contributed by AV, 28-Aug-2020.) |
| ⊢ #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) | ||
| Theorem | prmoval 16963* | Value of the primorial function for nonnegative integers. (Contributed by AV, 28-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) | ||
| Theorem | prmocl 16964 | Closure of the primorial function. (Contributed by AV, 28-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℕ) | ||
| Theorem | prmone0 16965 | The primorial function is nonzero. (Contributed by AV, 28-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≠ 0) | ||
| Theorem | prmo0 16966 | The primorial of 0. (Contributed by AV, 28-Aug-2020.) |
| ⊢ (#p‘0) = 1 | ||
| Theorem | prmo1 16967 | The primorial of 1. (Contributed by AV, 28-Aug-2020.) |
| ⊢ (#p‘1) = 1 | ||
| Theorem | prmop1 16968 | The primorial of a successor. (Contributed by AV, 28-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p‘𝑁) · (𝑁 + 1)), (#p‘𝑁))) | ||
| Theorem | prmonn2 16969 | Value of the primorial function expressed recursively. (Contributed by AV, 28-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) = if(𝑁 ∈ ℙ, ((#p‘(𝑁 − 1)) · 𝑁), (#p‘(𝑁 − 1)))) | ||
| Theorem | prmo2 16970 | The primorial of 2. (Contributed by AV, 28-Aug-2020.) |
| ⊢ (#p‘2) = 2 | ||
| Theorem | prmo3 16971 | The primorial of 3. (Contributed by AV, 28-Aug-2020.) |
| ⊢ (#p‘3) = 6 | ||
| Theorem | prmdvdsprmo 16972* | The primorial of a number is divisible by each prime less than or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 ≤ 𝑁 → 𝑝 ∥ (#p‘𝑁))) | ||
| Theorem | prmdvdsprmop 16973* | The primorial of a number plus an integer greater than 1 and less than or equal to the number is divisible by a prime less than or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) | ||
| Theorem | fvprmselelfz 16974* | The value of the prime selection function is in a finite sequence of integers if the argument is in this finite sequence of integers. (Contributed by AV, 19-Aug-2020.) |
| ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹‘𝑋) ∈ (1...𝑁)) | ||
| Theorem | fvprmselgcd1 16975* | The greatest common divisor of two values of the prime selection function for different arguments is 1. (Contributed by AV, 19-Aug-2020.) |
| ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) ⇒ ⊢ ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = 1) | ||
| Theorem | prmolefac 16976 | The primorial of a positive integer is less than or equal to the factorial of the integer. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (!‘𝑁)) | ||
| Theorem | prmodvdslcmf 16977 | The primorial of a nonnegative integer divides the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∥ (lcm‘(1...𝑁))) | ||
| Theorem | prmolelcmf 16978 | The primorial of a positive integer is less than or equal to the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (lcm‘(1...𝑁))) | ||
According to Wikipedia "Prime gap", https://en.wikipedia.org/wiki/Prime_gap (16-Aug-2020): "A prime gap is the difference between two successive prime numbers. The n-th prime gap, denoted gn or g(pn) is the difference between the (n+1)-th and the n-th prime numbers, i.e. gn = pn+1 - pn . We have g1 = 1, g2 = g3 = 2, and g4 = 4." It can be proven that there are arbitrary large gaps, usually by showing that "in the sequence n!+2, n!+3, ..., n!+n the first term is divisible by 2, the second term is divisible by 3, and so on. Thus, this is a sequence of n-1 consecutive composite integers, and it must belong to a gap between primes having length at least n.", see prmgap 16989. Instead of using the factorial of n (see df-fac 14199), any function can be chosen for which f(n) is not relatively prime to the integers 2, 3, ..., n. For example, the least common multiple of the integers 2, 3, ..., n, see prmgaplcm 16990, or the primorial n# (the product of all prime numbers less than or equal to n), see prmgapprmo 16992, are such functions, which provide smaller values than the factorial function (see lcmflefac 16577 and prmolefac 16976 resp. prmolelcmf 16978): "For instance, the first prime gap of size larger than 14 occurs between the primes 523 and 541, while 15! is the vastly larger number 1307674368000." But the least common multiple of the integers 2, 3, ..., 15 is 360360, and 15# is 30030 (p3248 = 30029 and P3249 = 30047, so g3248 = 18). | ||
| Theorem | prmgaplem1 16979 | Lemma for prmgap 16989: The factorial of a number plus an integer greater than 1 and less than or equal to the number is divisible by that integer. (Contributed by AV, 13-Aug-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((!‘𝑁) + 𝐼)) | ||
| Theorem | prmgaplem2 16980 | Lemma for prmgap 16989: The factorial of a number plus an integer greater than 1 and less than or equal to the number are not coprime. (Contributed by AV, 13-Aug-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)) | ||
| Theorem | prmgaplcmlem1 16981 | Lemma for prmgaplcm 16990: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less than or equal to the number is divisible by that integer. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼)) | ||
| Theorem | prmgaplcmlem2 16982 | Lemma for prmgaplcm 16990: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less than or equal to the number are not coprime. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)) | ||
| Theorem | prmgaplem3 16983* | Lemma for prmgap 16989. (Contributed by AV, 9-Aug-2020.) |
| ⊢ 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
| Theorem | prmgaplem4 16984* | Lemma for prmgap 16989. (Contributed by AV, 10-Aug-2020.) |
| ⊢ 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃)} ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
| Theorem | prmgaplem5 16985* | Lemma for prmgap 16989: for each integer greater than 2 there is a smaller prime closest to this integer, i.e. there is a smaller prime and no other prime is between this prime and the integer. (Contributed by AV, 9-Aug-2020.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ)) | ||
| Theorem | prmgaplem6 16986* | Lemma for prmgap 16989: for each positive integer there is a greater prime closest to this integer, i.e. there is a greater prime and no other prime is between this prime and the integer. (Contributed by AV, 10-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)) | ||
| Theorem | prmgaplem7 16987* | Lemma for prmgap 16989. (Contributed by AV, 12-Aug-2020.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 ∈ (ℕ ↑m ℕ)) & ⊢ (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹‘𝑁) + 𝑖) gcd 𝑖)) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 < ((𝐹‘𝑁) + 2) ∧ ((𝐹‘𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) | ||
| Theorem | prmgaplem8 16988* | Lemma for prmgap 16989. (Contributed by AV, 13-Aug-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 ∈ (ℕ ↑m ℕ)) & ⊢ (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹‘𝑁) + 𝑖) gcd 𝑖)) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) | ||
| Theorem | prmgap 16989* | The prime gap theorem: for each positive integer there are (at least) two successive primes with a difference ("gap") at least as big as the given integer. (Contributed by AV, 13-Aug-2020.) |
| ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) | ||
| Theorem | prmgaplcm 16990* | Alternate proof of prmgap 16989: in contrast to prmgap 16989, where the gap starts at n! , the factorial of n, the gap starts at the least common multiple of all positive integers less than or equal to n. (Contributed by AV, 13-Aug-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) | ||
| Theorem | prmgapprmolem 16991 | Lemma for prmgapprmo 16992: The primorial of a number plus an integer greater than 1 and less than or equal to the number are not coprime. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼)) | ||
| Theorem | prmgapprmo 16992* | Alternate proof of prmgap 16989: in contrast to prmgap 16989, where the gap starts at n! , the factorial of n, the gap starts at n#, the primorial of n. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) | ||
| Theorem | dec2dvds 16993 | Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 · 2) = 𝐶 & ⊢ 𝐷 = (𝐶 + 1) ⇒ ⊢ ¬ 2 ∥ ;𝐴𝐷 | ||
| Theorem | dec5dvds 16994 | Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐵 < 5 ⇒ ⊢ ¬ 5 ∥ ;𝐴𝐵 | ||
| Theorem | dec5dvds2 16995 | Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐵 < 5 & ⊢ (5 + 𝐵) = 𝐶 ⇒ ⊢ ¬ 5 ∥ ;𝐴𝐶 | ||
| Theorem | dec5nprm 16996 | A decimal number greater than 10 and ending with five is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ ¬ ;𝐴5 ∈ ℙ | ||
| Theorem | dec2nprm 16997 | A decimal number greater than 10 and ending with an even digit is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 · 2) = 𝐶 ⇒ ⊢ ¬ ;𝐴𝐶 ∈ ℙ | ||
| Theorem | modxai 16998 | Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
| ⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) & ⊢ (𝐵 + 𝐶) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
| Theorem | mod2xi 16999 | Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (2 · 𝐵) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
| Theorem | modxp1i 17000 | Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (𝐵 + 1) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |