MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vr1val Structured version   Visualization version   GIF version

Theorem vr1val 22214
Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1o = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
vr1val.1 𝑋 = (var1𝑅)
Assertion
Ref Expression
vr1val 𝑋 = ((1o mVar 𝑅)‘∅)

Proof of Theorem vr1val
Dummy variables 𝑓 𝑖 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vr1val.1 . . 3 𝑋 = (var1𝑅)
2 oveq2 7456 . . . . 5 (𝑟 = 𝑅 → (1o mVar 𝑟) = (1o mVar 𝑅))
32fveq1d 6922 . . . 4 (𝑟 = 𝑅 → ((1o mVar 𝑟)‘∅) = ((1o mVar 𝑅)‘∅))
4 df-vr1 22203 . . . 4 var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅))
5 fvex 6933 . . . 4 ((1o mVar 𝑅)‘∅) ∈ V
63, 4, 5fvmpt 7029 . . 3 (𝑅 ∈ V → (var1𝑅) = ((1o mVar 𝑅)‘∅))
71, 6eqtrid 2792 . 2 (𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅))
8 fvprc 6912 . . . 4 𝑅 ∈ V → (var1𝑅) = ∅)
9 0fv 6964 . . . 4 (∅‘∅) = ∅
108, 1, 93eqtr4g 2805 . . 3 𝑅 ∈ V → 𝑋 = (∅‘∅))
11 df-mvr 21953 . . . . . 6 mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))))
1211reldmmpo 7584 . . . . 5 Rel dom mVar
1312ovprc2 7488 . . . 4 𝑅 ∈ V → (1o mVar 𝑅) = ∅)
1413fveq1d 6922 . . 3 𝑅 ∈ V → ((1o mVar 𝑅)‘∅) = (∅‘∅))
1510, 14eqtr4d 2783 . 2 𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅))
167, 15pm2.61i 182 1 𝑋 = ((1o mVar 𝑅)‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  c0 4352  ifcif 4548  cmpt 5249  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448  1oc1o 8515  m cmap 8884  Fincfn 9003  0cc0 11184  1c1 11185  cn 12293  0cn0 12553  0gc0g 17499  1rcur 20208   mVar cmvr 21948  var1cv1 22198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-mvr 21953  df-vr1 22203
This theorem is referenced by:  vr1cl2  22215  vr1cl  22240  subrgvr1  22285  subrgvr1cl  22286  coe1tm  22297  ply1coe  22323  evl1var  22361  evls1var  22363  rhmply1vr1  22412
  Copyright terms: Public domain W3C validator