![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vr1val | Structured version Visualization version GIF version |
Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1o = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
vr1val.1 | ⊢ 𝑋 = (var1‘𝑅) |
Ref | Expression |
---|---|
vr1val | ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vr1val.1 | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
2 | oveq2 7417 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1o mVar 𝑟) = (1o mVar 𝑅)) | |
3 | 2 | fveq1d 6894 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1o mVar 𝑟)‘∅) = ((1o mVar 𝑅)‘∅)) |
4 | df-vr1 21705 | . . . 4 ⊢ var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅)) | |
5 | fvex 6905 | . . . 4 ⊢ ((1o mVar 𝑅)‘∅) ∈ V | |
6 | 3, 4, 5 | fvmpt 6999 | . . 3 ⊢ (𝑅 ∈ V → (var1‘𝑅) = ((1o mVar 𝑅)‘∅)) |
7 | 1, 6 | eqtrid 2785 | . 2 ⊢ (𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅)) |
8 | fvprc 6884 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (var1‘𝑅) = ∅) | |
9 | 0fv 6936 | . . . 4 ⊢ (∅‘∅) = ∅ | |
10 | 8, 1, 9 | 3eqtr4g 2798 | . . 3 ⊢ (¬ 𝑅 ∈ V → 𝑋 = (∅‘∅)) |
11 | df-mvr 21463 | . . . . . 6 ⊢ mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟))))) | |
12 | 11 | reldmmpo 7543 | . . . . 5 ⊢ Rel dom mVar |
13 | 12 | ovprc2 7449 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mVar 𝑅) = ∅) |
14 | 13 | fveq1d 6894 | . . 3 ⊢ (¬ 𝑅 ∈ V → ((1o mVar 𝑅)‘∅) = (∅‘∅)) |
15 | 10, 14 | eqtr4d 2776 | . 2 ⊢ (¬ 𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅)) |
16 | 7, 15 | pm2.61i 182 | 1 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 ∅c0 4323 ifcif 4529 ↦ cmpt 5232 ◡ccnv 5676 “ cima 5680 ‘cfv 6544 (class class class)co 7409 1oc1o 8459 ↑m cmap 8820 Fincfn 8939 0cc0 11110 1c1 11111 ℕcn 12212 ℕ0cn0 12472 0gc0g 17385 1rcur 20004 mVar cmvr 21458 var1cv1 21700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-mvr 21463 df-vr1 21705 |
This theorem is referenced by: vr1cl2 21717 vr1cl 21741 subrgvr1 21783 subrgvr1cl 21784 coe1tm 21795 ply1coe 21820 evl1var 21855 evls1var 21857 |
Copyright terms: Public domain | W3C validator |