| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vr1val | Structured version Visualization version GIF version | ||
| Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1o = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| vr1val.1 | ⊢ 𝑋 = (var1‘𝑅) |
| Ref | Expression |
|---|---|
| vr1val | ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1val.1 | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
| 2 | oveq2 7354 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1o mVar 𝑟) = (1o mVar 𝑅)) | |
| 3 | 2 | fveq1d 6824 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1o mVar 𝑟)‘∅) = ((1o mVar 𝑅)‘∅)) |
| 4 | df-vr1 22093 | . . . 4 ⊢ var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅)) | |
| 5 | fvex 6835 | . . . 4 ⊢ ((1o mVar 𝑅)‘∅) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6929 | . . 3 ⊢ (𝑅 ∈ V → (var1‘𝑅) = ((1o mVar 𝑅)‘∅)) |
| 7 | 1, 6 | eqtrid 2778 | . 2 ⊢ (𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅)) |
| 8 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (var1‘𝑅) = ∅) | |
| 9 | 0fv 6863 | . . . 4 ⊢ (∅‘∅) = ∅ | |
| 10 | 8, 1, 9 | 3eqtr4g 2791 | . . 3 ⊢ (¬ 𝑅 ∈ V → 𝑋 = (∅‘∅)) |
| 11 | df-mvr 21847 | . . . . . 6 ⊢ mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟))))) | |
| 12 | 11 | reldmmpo 7480 | . . . . 5 ⊢ Rel dom mVar |
| 13 | 12 | ovprc2 7386 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mVar 𝑅) = ∅) |
| 14 | 13 | fveq1d 6824 | . . 3 ⊢ (¬ 𝑅 ∈ V → ((1o mVar 𝑅)‘∅) = (∅‘∅)) |
| 15 | 10, 14 | eqtr4d 2769 | . 2 ⊢ (¬ 𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅)) |
| 16 | 7, 15 | pm2.61i 182 | 1 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∅c0 4280 ifcif 4472 ↦ cmpt 5170 ◡ccnv 5613 “ cima 5617 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ↑m cmap 8750 Fincfn 8869 0cc0 11006 1c1 11007 ℕcn 12125 ℕ0cn0 12381 0gc0g 17343 1rcur 20099 mVar cmvr 21842 var1cv1 22088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-mvr 21847 df-vr1 22093 |
| This theorem is referenced by: vr1cl2 22105 vr1cl 22130 subrgvr1 22175 subrgvr1cl 22176 coe1tm 22187 ply1coe 22213 evl1var 22251 evls1var 22253 rhmply1vr1 22302 |
| Copyright terms: Public domain | W3C validator |