![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vr1val | Structured version Visualization version GIF version |
Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1o = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
vr1val.1 | ⊢ 𝑋 = (var1‘𝑅) |
Ref | Expression |
---|---|
vr1val | ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vr1val.1 | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
2 | oveq2 7456 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1o mVar 𝑟) = (1o mVar 𝑅)) | |
3 | 2 | fveq1d 6922 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1o mVar 𝑟)‘∅) = ((1o mVar 𝑅)‘∅)) |
4 | df-vr1 22203 | . . . 4 ⊢ var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅)) | |
5 | fvex 6933 | . . . 4 ⊢ ((1o mVar 𝑅)‘∅) ∈ V | |
6 | 3, 4, 5 | fvmpt 7029 | . . 3 ⊢ (𝑅 ∈ V → (var1‘𝑅) = ((1o mVar 𝑅)‘∅)) |
7 | 1, 6 | eqtrid 2792 | . 2 ⊢ (𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅)) |
8 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (var1‘𝑅) = ∅) | |
9 | 0fv 6964 | . . . 4 ⊢ (∅‘∅) = ∅ | |
10 | 8, 1, 9 | 3eqtr4g 2805 | . . 3 ⊢ (¬ 𝑅 ∈ V → 𝑋 = (∅‘∅)) |
11 | df-mvr 21953 | . . . . . 6 ⊢ mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟))))) | |
12 | 11 | reldmmpo 7584 | . . . . 5 ⊢ Rel dom mVar |
13 | 12 | ovprc2 7488 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mVar 𝑅) = ∅) |
14 | 13 | fveq1d 6922 | . . 3 ⊢ (¬ 𝑅 ∈ V → ((1o mVar 𝑅)‘∅) = (∅‘∅)) |
15 | 10, 14 | eqtr4d 2783 | . 2 ⊢ (¬ 𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅)) |
16 | 7, 15 | pm2.61i 182 | 1 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∅c0 4352 ifcif 4548 ↦ cmpt 5249 ◡ccnv 5699 “ cima 5703 ‘cfv 6573 (class class class)co 7448 1oc1o 8515 ↑m cmap 8884 Fincfn 9003 0cc0 11184 1c1 11185 ℕcn 12293 ℕ0cn0 12553 0gc0g 17499 1rcur 20208 mVar cmvr 21948 var1cv1 22198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-mvr 21953 df-vr1 22203 |
This theorem is referenced by: vr1cl2 22215 vr1cl 22240 subrgvr1 22285 subrgvr1cl 22286 coe1tm 22297 ply1coe 22323 evl1var 22361 evls1var 22363 rhmply1vr1 22412 |
Copyright terms: Public domain | W3C validator |