![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vr1val | Structured version Visualization version GIF version |
Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1o = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
vr1val.1 | ⊢ 𝑋 = (var1‘𝑅) |
Ref | Expression |
---|---|
vr1val | ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vr1val.1 | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
2 | oveq2 7439 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1o mVar 𝑟) = (1o mVar 𝑅)) | |
3 | 2 | fveq1d 6909 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1o mVar 𝑟)‘∅) = ((1o mVar 𝑅)‘∅)) |
4 | df-vr1 22198 | . . . 4 ⊢ var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅)) | |
5 | fvex 6920 | . . . 4 ⊢ ((1o mVar 𝑅)‘∅) ∈ V | |
6 | 3, 4, 5 | fvmpt 7016 | . . 3 ⊢ (𝑅 ∈ V → (var1‘𝑅) = ((1o mVar 𝑅)‘∅)) |
7 | 1, 6 | eqtrid 2787 | . 2 ⊢ (𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅)) |
8 | fvprc 6899 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (var1‘𝑅) = ∅) | |
9 | 0fv 6951 | . . . 4 ⊢ (∅‘∅) = ∅ | |
10 | 8, 1, 9 | 3eqtr4g 2800 | . . 3 ⊢ (¬ 𝑅 ∈ V → 𝑋 = (∅‘∅)) |
11 | df-mvr 21948 | . . . . . 6 ⊢ mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟))))) | |
12 | 11 | reldmmpo 7567 | . . . . 5 ⊢ Rel dom mVar |
13 | 12 | ovprc2 7471 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mVar 𝑅) = ∅) |
14 | 13 | fveq1d 6909 | . . 3 ⊢ (¬ 𝑅 ∈ V → ((1o mVar 𝑅)‘∅) = (∅‘∅)) |
15 | 10, 14 | eqtr4d 2778 | . 2 ⊢ (¬ 𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅)) |
16 | 7, 15 | pm2.61i 182 | 1 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 ∅c0 4339 ifcif 4531 ↦ cmpt 5231 ◡ccnv 5688 “ cima 5692 ‘cfv 6563 (class class class)co 7431 1oc1o 8498 ↑m cmap 8865 Fincfn 8984 0cc0 11153 1c1 11154 ℕcn 12264 ℕ0cn0 12524 0gc0g 17486 1rcur 20199 mVar cmvr 21943 var1cv1 22193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-mvr 21948 df-vr1 22198 |
This theorem is referenced by: vr1cl2 22210 vr1cl 22235 subrgvr1 22280 subrgvr1cl 22281 coe1tm 22292 ply1coe 22318 evl1var 22356 evls1var 22358 rhmply1vr1 22407 |
Copyright terms: Public domain | W3C validator |