MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vr1val Structured version   Visualization version   GIF version

Theorem vr1val 22104
Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1o = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
vr1val.1 𝑋 = (var1𝑅)
Assertion
Ref Expression
vr1val 𝑋 = ((1o mVar 𝑅)‘∅)

Proof of Theorem vr1val
Dummy variables 𝑓 𝑖 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vr1val.1 . . 3 𝑋 = (var1𝑅)
2 oveq2 7354 . . . . 5 (𝑟 = 𝑅 → (1o mVar 𝑟) = (1o mVar 𝑅))
32fveq1d 6824 . . . 4 (𝑟 = 𝑅 → ((1o mVar 𝑟)‘∅) = ((1o mVar 𝑅)‘∅))
4 df-vr1 22093 . . . 4 var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅))
5 fvex 6835 . . . 4 ((1o mVar 𝑅)‘∅) ∈ V
63, 4, 5fvmpt 6929 . . 3 (𝑅 ∈ V → (var1𝑅) = ((1o mVar 𝑅)‘∅))
71, 6eqtrid 2778 . 2 (𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅))
8 fvprc 6814 . . . 4 𝑅 ∈ V → (var1𝑅) = ∅)
9 0fv 6863 . . . 4 (∅‘∅) = ∅
108, 1, 93eqtr4g 2791 . . 3 𝑅 ∈ V → 𝑋 = (∅‘∅))
11 df-mvr 21847 . . . . . 6 mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))))
1211reldmmpo 7480 . . . . 5 Rel dom mVar
1312ovprc2 7386 . . . 4 𝑅 ∈ V → (1o mVar 𝑅) = ∅)
1413fveq1d 6824 . . 3 𝑅 ∈ V → ((1o mVar 𝑅)‘∅) = (∅‘∅))
1510, 14eqtr4d 2769 . 2 𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅))
167, 15pm2.61i 182 1 𝑋 = ((1o mVar 𝑅)‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  c0 4280  ifcif 4472  cmpt 5170  ccnv 5613  cima 5617  cfv 6481  (class class class)co 7346  1oc1o 8378  m cmap 8750  Fincfn 8869  0cc0 11006  1c1 11007  cn 12125  0cn0 12381  0gc0g 17343  1rcur 20099   mVar cmvr 21842  var1cv1 22088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-mvr 21847  df-vr1 22093
This theorem is referenced by:  vr1cl2  22105  vr1cl  22130  subrgvr1  22175  subrgvr1cl  22176  coe1tm  22187  ply1coe  22213  evl1var  22251  evls1var  22253  rhmply1vr1  22302
  Copyright terms: Public domain W3C validator