MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vr1val Structured version   Visualization version   GIF version

Theorem vr1val 20354
Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1o = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
vr1val.1 𝑋 = (var1𝑅)
Assertion
Ref Expression
vr1val 𝑋 = ((1o mVar 𝑅)‘∅)

Proof of Theorem vr1val
Dummy variables 𝑓 𝑖 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vr1val.1 . . 3 𝑋 = (var1𝑅)
2 oveq2 7158 . . . . 5 (𝑟 = 𝑅 → (1o mVar 𝑟) = (1o mVar 𝑅))
32fveq1d 6667 . . . 4 (𝑟 = 𝑅 → ((1o mVar 𝑟)‘∅) = ((1o mVar 𝑅)‘∅))
4 df-vr1 20343 . . . 4 var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅))
5 fvex 6678 . . . 4 ((1o mVar 𝑅)‘∅) ∈ V
63, 4, 5fvmpt 6763 . . 3 (𝑅 ∈ V → (var1𝑅) = ((1o mVar 𝑅)‘∅))
71, 6syl5eq 2868 . 2 (𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅))
8 fvprc 6658 . . . 4 𝑅 ∈ V → (var1𝑅) = ∅)
9 0fv 6704 . . . 4 (∅‘∅) = ∅
108, 1, 93eqtr4g 2881 . . 3 𝑅 ∈ V → 𝑋 = (∅‘∅))
11 df-mvr 20131 . . . . . 6 mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))))
1211reldmmpo 7279 . . . . 5 Rel dom mVar
1312ovprc2 7190 . . . 4 𝑅 ∈ V → (1o mVar 𝑅) = ∅)
1413fveq1d 6667 . . 3 𝑅 ∈ V → ((1o mVar 𝑅)‘∅) = (∅‘∅))
1510, 14eqtr4d 2859 . 2 𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅))
167, 15pm2.61i 184 1 𝑋 = ((1o mVar 𝑅)‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3495  c0 4291  ifcif 4467  cmpt 5139  ccnv 5549  cima 5553  cfv 6350  (class class class)co 7150  1oc1o 8089  m cmap 8400  Fincfn 8503  0cc0 10531  1c1 10532  cn 11632  0cn0 11891  0gc0g 16707  1rcur 19245   mVar cmvr 20126  var1cv1 20338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-iota 6309  df-fun 6352  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-mvr 20131  df-vr1 20343
This theorem is referenced by:  vr1cl2  20355  vr1cl  20379  subrgvr1  20423  subrgvr1cl  20424  coe1tm  20435  ply1coe  20458  evl1var  20493  evls1var  20495
  Copyright terms: Public domain W3C validator