MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vr1val Structured version   Visualization version   GIF version

Theorem vr1val 22209
Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1o = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
vr1val.1 𝑋 = (var1𝑅)
Assertion
Ref Expression
vr1val 𝑋 = ((1o mVar 𝑅)‘∅)

Proof of Theorem vr1val
Dummy variables 𝑓 𝑖 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vr1val.1 . . 3 𝑋 = (var1𝑅)
2 oveq2 7439 . . . . 5 (𝑟 = 𝑅 → (1o mVar 𝑟) = (1o mVar 𝑅))
32fveq1d 6909 . . . 4 (𝑟 = 𝑅 → ((1o mVar 𝑟)‘∅) = ((1o mVar 𝑅)‘∅))
4 df-vr1 22198 . . . 4 var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅))
5 fvex 6920 . . . 4 ((1o mVar 𝑅)‘∅) ∈ V
63, 4, 5fvmpt 7016 . . 3 (𝑅 ∈ V → (var1𝑅) = ((1o mVar 𝑅)‘∅))
71, 6eqtrid 2787 . 2 (𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅))
8 fvprc 6899 . . . 4 𝑅 ∈ V → (var1𝑅) = ∅)
9 0fv 6951 . . . 4 (∅‘∅) = ∅
108, 1, 93eqtr4g 2800 . . 3 𝑅 ∈ V → 𝑋 = (∅‘∅))
11 df-mvr 21948 . . . . . 6 mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))))
1211reldmmpo 7567 . . . . 5 Rel dom mVar
1312ovprc2 7471 . . . 4 𝑅 ∈ V → (1o mVar 𝑅) = ∅)
1413fveq1d 6909 . . 3 𝑅 ∈ V → ((1o mVar 𝑅)‘∅) = (∅‘∅))
1510, 14eqtr4d 2778 . 2 𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅))
167, 15pm2.61i 182 1 𝑋 = ((1o mVar 𝑅)‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  c0 4339  ifcif 4531  cmpt 5231  ccnv 5688  cima 5692  cfv 6563  (class class class)co 7431  1oc1o 8498  m cmap 8865  Fincfn 8984  0cc0 11153  1c1 11154  cn 12264  0cn0 12524  0gc0g 17486  1rcur 20199   mVar cmvr 21943  var1cv1 22193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-mvr 21948  df-vr1 22198
This theorem is referenced by:  vr1cl2  22210  vr1cl  22235  subrgvr1  22280  subrgvr1cl  22281  coe1tm  22292  ply1coe  22318  evl1var  22356  evls1var  22358  rhmply1vr1  22407
  Copyright terms: Public domain W3C validator