| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vr1val | Structured version Visualization version GIF version | ||
| Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1o = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| vr1val.1 | ⊢ 𝑋 = (var1‘𝑅) |
| Ref | Expression |
|---|---|
| vr1val | ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1val.1 | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
| 2 | oveq2 7395 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1o mVar 𝑟) = (1o mVar 𝑅)) | |
| 3 | 2 | fveq1d 6860 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1o mVar 𝑟)‘∅) = ((1o mVar 𝑅)‘∅)) |
| 4 | df-vr1 22065 | . . . 4 ⊢ var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅)) | |
| 5 | fvex 6871 | . . . 4 ⊢ ((1o mVar 𝑅)‘∅) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6968 | . . 3 ⊢ (𝑅 ∈ V → (var1‘𝑅) = ((1o mVar 𝑅)‘∅)) |
| 7 | 1, 6 | eqtrid 2776 | . 2 ⊢ (𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅)) |
| 8 | fvprc 6850 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (var1‘𝑅) = ∅) | |
| 9 | 0fv 6902 | . . . 4 ⊢ (∅‘∅) = ∅ | |
| 10 | 8, 1, 9 | 3eqtr4g 2789 | . . 3 ⊢ (¬ 𝑅 ∈ V → 𝑋 = (∅‘∅)) |
| 11 | df-mvr 21819 | . . . . . 6 ⊢ mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟))))) | |
| 12 | 11 | reldmmpo 7523 | . . . . 5 ⊢ Rel dom mVar |
| 13 | 12 | ovprc2 7427 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mVar 𝑅) = ∅) |
| 14 | 13 | fveq1d 6860 | . . 3 ⊢ (¬ 𝑅 ∈ V → ((1o mVar 𝑅)‘∅) = (∅‘∅)) |
| 15 | 10, 14 | eqtr4d 2767 | . 2 ⊢ (¬ 𝑅 ∈ V → 𝑋 = ((1o mVar 𝑅)‘∅)) |
| 16 | 7, 15 | pm2.61i 182 | 1 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ∅c0 4296 ifcif 4488 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 1oc1o 8427 ↑m cmap 8799 Fincfn 8918 0cc0 11068 1c1 11069 ℕcn 12186 ℕ0cn0 12442 0gc0g 17402 1rcur 20090 mVar cmvr 21814 var1cv1 22060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-mvr 21819 df-vr1 22065 |
| This theorem is referenced by: vr1cl2 22077 vr1cl 22102 subrgvr1 22147 subrgvr1cl 22148 coe1tm 22159 ply1coe 22185 evl1var 22223 evls1var 22225 rhmply1vr1 22274 |
| Copyright terms: Public domain | W3C validator |