| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-vrmd | Structured version Visualization version GIF version | ||
| Description: Define a free monoid over a set 𝑖 of generators, defined as the set of finite strings on 𝐼 with the operation of concatenation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| df-vrmd | ⊢ varFMnd = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrmd 18826 | . 2 class varFMnd | |
| 2 | vi | . . 3 setvar 𝑖 | |
| 3 | cvv 3459 | . . 3 class V | |
| 4 | vj | . . . 4 setvar 𝑗 | |
| 5 | 2 | cv 1539 | . . . 4 class 𝑖 |
| 6 | 4 | cv 1539 | . . . . 5 class 𝑗 |
| 7 | 6 | cs1 14613 | . . . 4 class 〈“𝑗”〉 |
| 8 | 4, 5, 7 | cmpt 5201 | . . 3 class (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉) |
| 9 | 2, 3, 8 | cmpt 5201 | . 2 class (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉)) |
| 10 | 1, 9 | wceq 1540 | 1 wff varFMnd = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: vrmdfval 18834 |
| Copyright terms: Public domain | W3C validator |