HomeHome Metamath Proof Explorer
Theorem List (p. 189 of 499)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30893)
  Hilbert Space Explorer  Hilbert Space Explorer
(30894-32416)
  Users' Mathboxes  Users' Mathboxes
(32417-49836)
 

Theorem List for Metamath Proof Explorer - 18801-18900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsursubmefmnd 18801* The set of surjective endofunctions on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Feb-2024.)
𝑀 = (EndoFMnd‘𝐴)       (𝐴𝑉 → {:𝐴onto𝐴} ∈ (SubMnd‘𝑀))
 
Theoreminjsubmefmnd 18802* The set of injective endofunctions on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Feb-2024.)
𝑀 = (EndoFMnd‘𝐴)       (𝐴𝑉 → {:𝐴1-1𝐴} ∈ (SubMnd‘𝑀))
 
Theoremidressubmefmnd 18803 The singleton containing only the identity function restricted to a set is a submonoid of the monoid of endofunctions on this set. (Contributed by AV, 17-Feb-2024.)
𝐺 = (EndoFMnd‘𝐴)       (𝐴𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺))
 
Theoremidresefmnd 18804 The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.)
𝐺 = (EndoFMnd‘𝐴)    &   𝐸 = (𝐺s {( I ↾ 𝐴)})       (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
 
Theoremsmndex1ibas 18805 The modulo function 𝐼 is an endofunction on 0. (Contributed by AV, 12-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))       𝐼 ∈ (Base‘𝑀)
 
Theoremsmndex1iidm 18806* The modulo function 𝐼 is idempotent. (Contributed by AV, 12-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))       (𝐼𝐼) = 𝐼
 
Theoremsmndex1gbas 18807* The constant functions (𝐺𝐾) are endofunctions on 0. (Contributed by AV, 12-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))       (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) ∈ (Base‘𝑀))
 
Theoremsmndex1gid 18808* The composition of a constant function (𝐺𝐾) with another endofunction on 0 results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))       ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝐺𝐾))
 
Theoremsmndex1igid 18809* The composition of the modulo function 𝐼 and a constant function (𝐺𝐾) results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))       (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝐾)) = (𝐺𝐾))
 
Theoremsmndex1basss 18810* The modulo function 𝐼 and the constant functions (𝐺𝐾) are endofunctions on 0. (Contributed by AV, 12-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})       𝐵 ⊆ (Base‘𝑀)
 
Theoremsmndex1bas 18811* The base set of the monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾). (Contributed by AV, 12-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       (Base‘𝑆) = 𝐵
 
Theoremsmndex1mgm 18812* The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a magma. (Contributed by AV, 14-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       𝑆 ∈ Mgm
 
Theoremsmndex1sgrp 18813* The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a semigroup. (Contributed by AV, 14-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       𝑆 ∈ Smgrp
 
Theoremsmndex1mndlem 18814* Lemma for smndex1mnd 18815 and smndex1id 18816. (Contributed by AV, 16-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       (𝑋𝐵 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
 
Theoremsmndex1mnd 18815* The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a monoid. (Contributed by AV, 16-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       𝑆 ∈ Mnd
 
Theoremsmndex1id 18816* The modulo function 𝐼 is the identity of the monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾). (Contributed by AV, 16-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       𝐼 = (0g𝑆)
 
Theoremsmndex1n0mnd 18817* The identity of the monoid 𝑀 of endofunctions on set 0 is not contained in the base set of the constructed monoid 𝑆. (Contributed by AV, 17-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       (0g𝑀) ∉ 𝐵
 
Theoremnsmndex1 18818* The base set 𝐵 of the constructed monoid 𝑆 is not a submonoid of the monoid 𝑀 of endofunctions on set 0, although 𝑀 ∈ Mnd and 𝑆 ∈ Mnd and 𝐵 ⊆ (Base‘𝑀) hold. (Contributed by AV, 17-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝑁 ∈ ℕ    &   𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))    &   𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))    &   𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})    &   𝑆 = (𝑀s 𝐵)       𝐵 ∉ (SubMnd‘𝑀)
 
Theoremsmndex2dbas 18819 The doubling function 𝐷 is an endofunction on 0. (Contributed by AV, 18-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))       𝐷𝐵
 
Theoremsmndex2dnrinv 18820 The doubling function 𝐷 has no right inverse in the monoid of endofunctions on 0. (Contributed by AV, 18-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))       𝑓𝐵 (𝐷𝑓) ≠ 0
 
Theoremsmndex2hbas 18821 The halving functions 𝐻 are endofunctions on 0. (Contributed by AV, 18-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))    &   𝑁 ∈ ℕ0    &   𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁))       𝐻𝐵
 
Theoremsmndex2dlinvh 18822* The halving functions 𝐻 are left inverses of the doubling function 𝐷. (Contributed by AV, 18-Feb-2024.)
𝑀 = (EndoFMnd‘ℕ0)    &   𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))    &   𝑁 ∈ ℕ0    &   𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁))       (𝐻𝐷) = 0
 
10.1.10  Examples and counterexamples for magmas, semigroups and monoids
 
Theoremmgm2nsgrplem1 18823* Lemma 1 for mgm2nsgrp 18827: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18560). (Contributed by AV, 27-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))       ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
 
Theoremmgm2nsgrplem2 18824* Lemma 2 for mgm2nsgrp 18827. (Contributed by AV, 27-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))    &    = (+g𝑀)       ((𝐴𝑉𝐵𝑊) → ((𝐴 𝐴) 𝐵) = 𝐴)
 
Theoremmgm2nsgrplem3 18825* Lemma 3 for mgm2nsgrp 18827. (Contributed by AV, 28-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))    &    = (+g𝑀)       ((𝐴𝑉𝐵𝑊) → (𝐴 (𝐴 𝐵)) = 𝐵)
 
Theoremmgm2nsgrplem4 18826* Lemma 4 for mgm2nsgrp 18827: M is not a semigroup. (Contributed by AV, 28-Jan-2020.) (Proof shortened by AV, 31-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))       ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp)
 
Theoremmgm2nsgrp 18827* A small magma (with two elements) which is not a semigroup. (Contributed by AV, 28-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))       ((♯‘𝑆) = 2 → (𝑀 ∈ Mgm ∧ 𝑀 ∉ Smgrp))
 
Theoremsgrp2nmndlem1 18828* Lemma 1 for sgrp2nmnd 18835: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18560). (Contributed by AV, 29-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))       ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
 
Theoremsgrp2nmndlem2 18829* Lemma 2 for sgrp2nmnd 18835. (Contributed by AV, 29-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))    &    = (+g𝑀)       ((𝐴𝑆𝐶𝑆) → (𝐴 𝐶) = 𝐴)
 
Theoremsgrp2nmndlem3 18830* Lemma 3 for sgrp2nmnd 18835. (Contributed by AV, 29-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))    &    = (+g𝑀)       ((𝐶𝑆𝐵𝑆𝐴𝐵) → (𝐵 𝐶) = 𝐵)
 
Theoremsgrp2rid2 18831* A small semigroup (with two elements) with two right identities which are different if 𝐴𝐵. (Contributed by AV, 10-Feb-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))    &    = (+g𝑀)       ((𝐴𝑉𝐵𝑊) → ∀𝑥𝑆𝑦𝑆 (𝑦 𝑥) = 𝑦)
 
Theoremsgrp2rid2ex 18832* A small semigroup (with two elements) with two right identities which are different. (Contributed by AV, 10-Feb-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))    &    = (+g𝑀)       ((♯‘𝑆) = 2 → ∃𝑥𝑆𝑧𝑆𝑦𝑆 (𝑥𝑧 ∧ (𝑦 𝑥) = 𝑦 ∧ (𝑦 𝑧) = 𝑦))
 
Theoremsgrp2nmndlem4 18833* Lemma 4 for sgrp2nmnd 18835: M is a semigroup. (Contributed by AV, 29-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))       ((♯‘𝑆) = 2 → 𝑀 ∈ Smgrp)
 
Theoremsgrp2nmndlem5 18834* Lemma 5 for sgrp2nmnd 18835: M is not a monoid. (Contributed by AV, 29-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))       ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd)
 
Theoremsgrp2nmnd 18835* A small semigroup (with two elements) which is not a monoid. (Contributed by AV, 26-Jan-2020.)
𝑆 = {𝐴, 𝐵}    &   (Base‘𝑀) = 𝑆    &   (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))       ((♯‘𝑆) = 2 → (𝑀 ∈ Smgrp ∧ 𝑀 ∉ Mnd))
 
Theoremmgmnsgrpex 18836 There is a magma which is not a semigroup. (Contributed by AV, 29-Jan-2020.)
𝑚 ∈ Mgm 𝑚 ∉ Smgrp
 
Theoremsgrpnmndex 18837 There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020.)
𝑚 ∈ Smgrp 𝑚 ∉ Mnd
 
Theoremsgrpssmgm 18838 The class of all semigroups is a proper subclass of the class of all magmas. (Contributed by AV, 29-Jan-2020.)
Smgrp ⊊ Mgm
 
Theoremmndsssgrp 18839 The class of all monoids is a proper subclass of the class of all semigroups. (Contributed by AV, 29-Jan-2020.)
Mnd ⊊ Smgrp
 
Theorempwmndgplus 18840* The operation of the monoid of the power set of a class 𝐴 under union. (Contributed by AV, 27-Feb-2024.)
(Base‘𝑀) = 𝒫 𝐴    &   (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))       ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋(+g𝑀)𝑌) = (𝑋𝑌))
 
Theorempwmndid 18841* The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.)
(Base‘𝑀) = 𝒫 𝐴    &   (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))       (0g𝑀) = ∅
 
Theorempwmnd 18842* The power set of a class 𝐴 is a monoid under union. (Contributed by AV, 27-Feb-2024.)
(Base‘𝑀) = 𝒫 𝐴    &   (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))       𝑀 ∈ Mnd
 
10.2  Groups
 
10.2.1  Definition and basic properties
 
Syntaxcgrp 18843 Extend class notation with class of all groups.
class Grp
 
Syntaxcminusg 18844 Extend class notation with inverse of group element.
class invg
 
Syntaxcsg 18845 Extend class notation with group subtraction (or division) operation.
class -g
 
Definitiondf-grp 18846* Define class of all groups. A group is a monoid (df-mnd 18640) whose internal operation is such that every element admits a left inverse (which can be proven to be a two-sided inverse). Thus, a group 𝐺 is an algebraic structure formed from a base set of elements (notated (Base‘𝐺) per df-base 17118) and an internal group operation (notated (+g𝐺) per df-plusg 17171). The operation combines any two elements of the group base set and must satisfy the 4 group axioms: closure (the result of the group operation must always be a member of the base set, see grpcl 18851), associativity (so ((𝑎+g𝑏)+g𝑐) = (𝑎+g(𝑏+g𝑐)) for any a, b, c, see grpass 18852), identity (there must be an element 𝑒 = (0g𝐺) such that 𝑒+g𝑎 = 𝑎+g𝑒 = 𝑎 for any a), and inverse (for each element a in the base set, there must be an element 𝑏 = invg𝑎 in the base set such that 𝑎+g𝑏 = 𝑏+g𝑎 = 𝑒). It can be proven that the identity element is unique (grpideu 18854). Groups need not be commutative; a commutative group is an Abelian group (see df-abl 19693). Subgroups can often be formed from groups, see df-subg 19033. An example of an (Abelian) group is the set of complex numbers over the group operation + (addition), as proven in cnaddablx 19778; an Abelian group is a group as proven in ablgrp 19695. Other structures include groups, including unital rings (df-ring 20151) and fields (df-field 20645). (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔)}
 
Definitiondf-minusg 18847* Define inverse of group element. (Contributed by NM, 24-Aug-2011.)
invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑤 ∈ (Base‘𝑔)(𝑤(+g𝑔)𝑥) = (0g𝑔))))
 
Definitiondf-sbg 18848* Define group subtraction (also called division for multiplicative groups). (Contributed by NM, 31-Mar-2014.)
-g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
 
Theoremisgrp 18849* The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
 
Theoremgrpmnd 18850 A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝐺 ∈ Grp → 𝐺 ∈ Mnd)
 
Theoremgrpcl 18851 Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremgrpass 18852 A group operation is associative. (Contributed by NM, 14-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremgrpinvex 18853* Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
 
Theoremgrpideu 18854* The two-sided identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 8-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Grp → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
 
Theoremgrpassd 18855 A group operation is associative. (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremgrpmndd 18856 A group is a monoid. (Contributed by SN, 1-Jun-2024.)
(𝜑𝐺 ∈ Grp)       (𝜑𝐺 ∈ Mnd)
 
Theoremgrpcld 18857 Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremgrpplusf 18858 The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &   𝐹 = (+𝑓𝐺)       (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)⟶𝐵)
 
Theoremgrpplusfo 18859 The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &   𝐹 = (+𝑓𝐺)       (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto𝐵)
 
Theoremresgrpplusfrn 18860 The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &   𝐻 = (𝐺s 𝑆)    &   𝐹 = (+𝑓𝐻)       ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = ran 𝐹)
 
Theoremgrppropd 18861* If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
 
Theoremgrpprop 18862 If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)       (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)
 
Theoremgrppropstr 18863 Generalize a specific 2-element group 𝐿 to show that any set 𝐾 with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
(Base‘𝐾) = 𝐵    &   (+g𝐾) = +    &   𝐿 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)
 
Theoremgrpss 18864 Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 20154, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}    &   𝑅 ∈ V    &   𝐺𝑅    &   Fun 𝑅       (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp)
 
Theoremisgrpd2e 18865* Deduce a group from its properties. In this version of isgrpd2 18866, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 10-Aug-2013.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑0 = (0g𝐺))    &   (𝜑𝐺 ∈ Mnd)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )       (𝜑𝐺 ∈ Grp)
 
Theoremisgrpd2 18866* Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2731, but we make an exception for theorems such as isgrpd2 18866, ismndd 18661, and islmodd 20797 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑0 = (0g𝐺))    &   (𝜑𝐺 ∈ Mnd)    &   ((𝜑𝑥𝐵) → 𝑁𝐵)    &   ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )       (𝜑𝐺 ∈ Grp)
 
Theoremisgrpde 18867* Deduce a group from its properties. In this version of isgrpd 18868, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )       (𝜑𝐺 ∈ Grp)
 
Theoremisgrpd 18868* Deduce a group from its properties. Unlike isgrpd2 18866, this one goes straight from the base properties rather than going through Mnd. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → 𝑁𝐵)    &   ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )       (𝜑𝐺 ∈ Grp)
 
Theoremisgrpi 18869* Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &    0𝐵    &   (𝑥𝐵 → ( 0 + 𝑥) = 𝑥)    &   (𝑥𝐵𝑁𝐵)    &   (𝑥𝐵 → (𝑁 + 𝑥) = 0 )       𝐺 ∈ Grp
 
Theoremgrpsgrp 18870 A group is a semigroup. (Contributed by AV, 28-Aug-2021.)
(𝐺 ∈ Grp → 𝐺 ∈ Smgrp)
 
Theoremgrpmgmd 18871 A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.)
(𝜑𝐺 ∈ Grp)       (𝜑𝐺 ∈ Mgm)
 
Theoremdfgrp2 18872* Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 18846, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
 
Theoremdfgrp2e 18873* Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
 
Theoremisgrpix 18874* Properties that determine a group. Read 𝑁 as 𝑁(𝑥). Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.)
𝐵 ∈ V    &    + ∈ V    &   𝐺 = {⟨1, 𝐵⟩, ⟨2, + ⟩}    &   ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &    0𝐵    &   (𝑥𝐵 → ( 0 + 𝑥) = 𝑥)    &   (𝑥𝐵𝑁𝐵)    &   (𝑥𝐵 → (𝑁 + 𝑥) = 0 )       𝐺 ∈ Grp
 
Theoremgrpidcl 18875 The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Grp → 0𝐵)
 
Theoremgrpbn0 18876 The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Grp → 𝐵 ≠ ∅)
 
Theoremgrplid 18877 The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
 
Theoremgrprid 18878 The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
 
Theoremgrplidd 18879 The identity element of a group is a left identity. Deduction associated with grplid 18877. (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)       (𝜑 → ( 0 + 𝑋) = 𝑋)
 
Theoremgrpridd 18880 The identity element of a group is a right identity. Deduction associated with grprid 18878. (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 + 0 ) = 𝑋)
 
Theoremgrpn0 18881 A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Revised by Mario Carneiro, 2-Dec-2014.)
(𝐺 ∈ Grp → 𝐺 ≠ ∅)
 
Theoremhashfingrpnn 18882 A finite group has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → (♯‘𝐵) ∈ ℕ)
 
Theoremgrprcan 18883 Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))
 
Theoremgrpinveu 18884* The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
 
Theoremgrpid 18885 Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
 
Theoremisgrpid2 18886 Properties showing that an element 𝑍 is the identity element of a group. (Contributed by NM, 7-Aug-2013.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Grp → ((𝑍𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍))
 
Theoremgrpidd2 18887* Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 18868. (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   (𝜑𝐺 ∈ Grp)       (𝜑0 = (0g𝐺))
 
Theoremgrpinvfval 18888* The inverse function of a group. For a shorter proof using ax-rep 5217, see grpinvfvalALT 18889. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) Remove dependency on ax-rep 5217. (Revised by Rohan Ridenour, 13-Aug-2023.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
 
TheoremgrpinvfvalALT 18889* Shorter proof of grpinvfval 18888 using ax-rep 5217. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
 
Theoremgrpinvval 18890* The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
 
Theoremgrpinvfn 18891 Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       𝑁 Fn 𝐵
 
Theoremgrpinvfvi 18892 The group inverse function is compatible with identity-function protection. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝑁 = (invg𝐺)       𝑁 = (invg‘( I ‘𝐺))
 
Theoremgrpsubfval 18893* Group subtraction (division) operation. For a shorter proof using ax-rep 5217, see grpsubfvalALT 18894. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) Remove dependency on ax-rep 5217. (Revised by Rohan Ridenour, 17-Aug-2023.) (Proof shortened by AV, 19-Feb-2024.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐼 = (invg𝐺)    &    = (-g𝐺)        = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
 
TheoremgrpsubfvalALT 18894* Shorter proof of grpsubfval 18893 using ax-rep 5217. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐼 = (invg𝐺)    &    = (-g𝐺)        = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
 
Theoremgrpsubval 18895 Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐼 = (invg𝐺)    &    = (-g𝐺)       ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + (𝐼𝑌)))
 
Theoremgrpinvf 18896 The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
 
Theoremgrpinvcl 18897 A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
 
Theoremgrpinvcld 18898 A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁𝑋) ∈ 𝐵)
 
Theoremgrplinv 18899 The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
 
Theoremgrprinv 18900 The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49800 499 49801-49836
  Copyright terms: Public domain < Previous  Next >