HomeHome Metamath Proof Explorer
Theorem List (p. 189 of 468)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29329)
  Hilbert Space Explorer  Hilbert Space Explorer
(29330-30852)
  Users' Mathboxes  Users' Mathboxes
(30853-46765)
 

Theorem List for Metamath Proof Explorer - 18801-18900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-subg 18801* Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2 18819), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 18814), contains the neutral element of the group (see subg0 18810) and contains the inverses for all of its elements (see subginvcl 18813). (Contributed by Mario Carneiro, 2-Dec-2014.)
SubGrp = (𝑀 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ (𝑀 β†Ύs 𝑠) ∈ Grp})
 
Definitiondf-nsg 18802* Define the equivalence relation in a quotient ring or quotient group (where 𝑖 is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015.)
NrmSGrp = (𝑀 ∈ Grp ↦ {𝑠 ∈ (SubGrpβ€˜π‘€) ∣ [(Baseβ€˜π‘€) / 𝑏][(+gβ€˜π‘€) / 𝑝]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 ((π‘₯𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝π‘₯) ∈ 𝑠)})
 
Definitiondf-eqg 18803* Define the equivalence relation in a group generated by a subgroup. More precisely, if 𝐺 is a group and 𝐻 is a subgroup, then 𝐺 ~QG 𝐻 is the equivalence relation on 𝐺 associated with the left cosets of 𝐻. A typical application of this definition is the construction of the quotient group (resp. ring) of a group (resp. ring) by a normal subgroup (resp. two-sided ideal). (Contributed by Mario Carneiro, 15-Jun-2015.)
~QG = (π‘Ÿ ∈ V, 𝑖 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† (Baseβ€˜π‘Ÿ) ∧ (((invgβ€˜π‘Ÿ)β€˜π‘₯)(+gβ€˜π‘Ÿ)𝑦) ∈ 𝑖)})
 
Theoremissubg 18804 The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐡 = (Baseβ€˜πΊ)    β‡’   (𝑆 ∈ (SubGrpβ€˜πΊ) ↔ (𝐺 ∈ Grp ∧ 𝑆 βŠ† 𝐡 ∧ (𝐺 β†Ύs 𝑆) ∈ Grp))
 
Theoremsubgss 18805 A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐡 = (Baseβ€˜πΊ)    β‡’   (𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 𝑆 βŠ† 𝐡)
 
Theoremsubgid 18806 A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐡 = (Baseβ€˜πΊ)    β‡’   (𝐺 ∈ Grp β†’ 𝐡 ∈ (SubGrpβ€˜πΊ))
 
Theoremsubggrp 18807 A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐻 = (𝐺 β†Ύs 𝑆)    β‡’   (𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 𝐻 ∈ Grp)
 
Theoremsubgbas 18808 The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐻 = (𝐺 β†Ύs 𝑆)    β‡’   (𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 𝑆 = (Baseβ€˜π»))
 
Theoremsubgrcl 18809 Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
(𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 𝐺 ∈ Grp)
 
Theoremsubg0 18810 A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐻 = (𝐺 β†Ύs 𝑆)    &    0 = (0gβ€˜πΊ)    β‡’   (𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 0 = (0gβ€˜π»))
 
Theoremsubginv 18811 The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐻 = (𝐺 β†Ύs 𝑆)    &   πΌ = (invgβ€˜πΊ)    &   π½ = (invgβ€˜π»)    β‡’   ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝑋 ∈ 𝑆) β†’ (πΌβ€˜π‘‹) = (π½β€˜π‘‹))
 
Theoremsubg0cl 18812 The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
0 = (0gβ€˜πΊ)    β‡’   (𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 0 ∈ 𝑆)
 
Theoremsubginvcl 18813 The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐼 = (invgβ€˜πΊ)    β‡’   ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝑋 ∈ 𝑆) β†’ (πΌβ€˜π‘‹) ∈ 𝑆)
 
Theoremsubgcl 18814 A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.)
+ = (+gβ€˜πΊ)    β‡’   ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ (𝑋 + π‘Œ) ∈ 𝑆)
 
Theoremsubgsubcl 18815 A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015.)
βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ (𝑋 βˆ’ π‘Œ) ∈ 𝑆)
 
Theoremsubgsub 18816 The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.)
βˆ’ = (-gβ€˜πΊ)    &   π» = (𝐺 β†Ύs 𝑆)    &   π‘ = (-gβ€˜π»)    β‡’   ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ (𝑋 βˆ’ π‘Œ) = (π‘‹π‘π‘Œ))
 
Theoremsubgmulgcl 18817 Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
Β· = (.gβ€˜πΊ)    β‡’   ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝑁 ∈ β„€ ∧ 𝑋 ∈ 𝑆) β†’ (𝑁 Β· 𝑋) ∈ 𝑆)
 
Theoremsubgmulg 18818 A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Β· = (.gβ€˜πΊ)    &   π» = (𝐺 β†Ύs 𝑆)    &    βˆ™ = (.gβ€˜π»)    β‡’   ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝑁 ∈ β„€ ∧ 𝑋 ∈ 𝑆) β†’ (𝑁 Β· 𝑋) = (𝑁 βˆ™ 𝑋))
 
Theoremissubg2 18819* Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐡 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &   πΌ = (invgβ€˜πΊ)    β‡’   (𝐺 ∈ Grp β†’ (𝑆 ∈ (SubGrpβ€˜πΊ) ↔ (𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ… ∧ βˆ€π‘₯ ∈ 𝑆 (βˆ€π‘¦ ∈ 𝑆 (π‘₯ + 𝑦) ∈ 𝑆 ∧ (πΌβ€˜π‘₯) ∈ 𝑆))))
 
Theoremissubgrpd2 18820* Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
(πœ‘ β†’ 𝑆 = (𝐼 β†Ύs 𝐷))    &   (πœ‘ β†’ 0 = (0gβ€˜πΌ))    &   (πœ‘ β†’ + = (+gβ€˜πΌ))    &   (πœ‘ β†’ 𝐷 βŠ† (Baseβ€˜πΌ))    &   (πœ‘ β†’ 0 ∈ 𝐷)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) β†’ (π‘₯ + 𝑦) ∈ 𝐷)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐷) β†’ ((invgβ€˜πΌ)β€˜π‘₯) ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 ∈ Grp)    β‡’   (πœ‘ β†’ 𝐷 ∈ (SubGrpβ€˜πΌ))
 
Theoremissubgrpd 18821* Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.)
(πœ‘ β†’ 𝑆 = (𝐼 β†Ύs 𝐷))    &   (πœ‘ β†’ 0 = (0gβ€˜πΌ))    &   (πœ‘ β†’ + = (+gβ€˜πΌ))    &   (πœ‘ β†’ 𝐷 βŠ† (Baseβ€˜πΌ))    &   (πœ‘ β†’ 0 ∈ 𝐷)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) β†’ (π‘₯ + 𝑦) ∈ 𝐷)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐷) β†’ ((invgβ€˜πΌ)β€˜π‘₯) ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 ∈ Grp)    β‡’   (πœ‘ β†’ 𝑆 ∈ Grp)
 
Theoremissubg3 18822* A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐼 = (invgβ€˜πΊ)    β‡’   (𝐺 ∈ Grp β†’ (𝑆 ∈ (SubGrpβ€˜πΊ) ↔ (𝑆 ∈ (SubMndβ€˜πΊ) ∧ βˆ€π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯) ∈ 𝑆)))
 
Theoremissubg4 18823* A subgroup is a nonempty subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
𝐡 = (Baseβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   (𝐺 ∈ Grp β†’ (𝑆 ∈ (SubGrpβ€˜πΊ) ↔ (𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ… ∧ βˆ€π‘₯ ∈ 𝑆 βˆ€π‘¦ ∈ 𝑆 (π‘₯ βˆ’ 𝑦) ∈ 𝑆)))
 
Theoremgrpissubg 18824 If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.)
𝐡 = (Baseβ€˜πΊ)    &   π‘† = (Baseβ€˜π»)    β‡’   ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) β†’ ((𝑆 βŠ† 𝐡 ∧ (+gβ€˜π») = ((+gβ€˜πΊ) β†Ύ (𝑆 Γ— 𝑆))) β†’ 𝑆 ∈ (SubGrpβ€˜πΊ)))
 
Theoremresgrpisgrp 18825 If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019.)
𝐡 = (Baseβ€˜πΊ)    &   π‘† = (Baseβ€˜π»)    β‡’   ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) β†’ ((𝑆 βŠ† 𝐡 ∧ (+gβ€˜π») = ((+gβ€˜πΊ) β†Ύ (𝑆 Γ— 𝑆))) β†’ (𝐺 β†Ύs 𝑆) ∈ Grp))
 
Theoremsubgsubm 18826 A subgroup is a submonoid. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 𝑆 ∈ (SubMndβ€˜πΊ))
 
Theoremsubsubg 18827 A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
𝐻 = (𝐺 β†Ύs 𝑆)    β‡’   (𝑆 ∈ (SubGrpβ€˜πΊ) β†’ (𝐴 ∈ (SubGrpβ€˜π») ↔ (𝐴 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 βŠ† 𝑆)))
 
Theoremsubgint 18828 The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
((𝑆 βŠ† (SubGrpβ€˜πΊ) ∧ 𝑆 β‰  βˆ…) β†’ ∩ 𝑆 ∈ (SubGrpβ€˜πΊ))
 
Theorem0subg 18829 The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.)
0 = (0gβ€˜πΊ)    β‡’   (𝐺 ∈ Grp β†’ { 0 } ∈ (SubGrpβ€˜πΊ))
 
Theoremtrivsubgd 18830 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐡 = (Baseβ€˜πΊ)    &    0 = (0gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Grp)    &   (πœ‘ β†’ 𝐡 = { 0 })    &   (πœ‘ β†’ 𝐴 ∈ (SubGrpβ€˜πΊ))    β‡’   (πœ‘ β†’ 𝐴 = 𝐡)
 
Theoremtrivsubgsnd 18831 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐡 = (Baseβ€˜πΊ)    &    0 = (0gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Grp)    &   (πœ‘ β†’ 𝐡 = { 0 })    β‡’   (πœ‘ β†’ (SubGrpβ€˜πΊ) = {𝐡})
 
Theoremisnsg 18832* Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   (𝑆 ∈ (NrmSGrpβ€˜πΊ) ↔ (𝑆 ∈ (SubGrpβ€˜πΊ) ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘₯ + 𝑦) ∈ 𝑆 ↔ (𝑦 + π‘₯) ∈ 𝑆)))
 
Theoremisnsg2 18833* Weaken the condition of isnsg 18832 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   (𝑆 ∈ (NrmSGrpβ€˜πΊ) ↔ (𝑆 ∈ (SubGrpβ€˜πΊ) ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘₯ + 𝑦) ∈ 𝑆 β†’ (𝑦 + π‘₯) ∈ 𝑆)))
 
Theoremnsgbi 18834 Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   ((𝑆 ∈ (NrmSGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴 + 𝐡) ∈ 𝑆 ↔ (𝐡 + 𝐴) ∈ 𝑆))
 
Theoremnsgsubg 18835 A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
(𝑆 ∈ (NrmSGrpβ€˜πΊ) β†’ 𝑆 ∈ (SubGrpβ€˜πΊ))
 
Theoremnsgconj 18836 The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝑋 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝑆 ∈ (NrmSGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑆) β†’ ((𝐴 + 𝐡) βˆ’ 𝐴) ∈ 𝑆)
 
Theoremisnsg3 18837* A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   (𝑆 ∈ (NrmSGrpβ€˜πΊ) ↔ (𝑆 ∈ (SubGrpβ€˜πΊ) ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑆 ((π‘₯ + 𝑦) βˆ’ π‘₯) ∈ 𝑆))
 
Theoremsubgacs 18838 Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
𝐡 = (Baseβ€˜πΊ)    β‡’   (𝐺 ∈ Grp β†’ (SubGrpβ€˜πΊ) ∈ (ACSβ€˜π΅))
 
Theoremnsgacs 18839 Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.)
𝐡 = (Baseβ€˜πΊ)    β‡’   (𝐺 ∈ Grp β†’ (NrmSGrpβ€˜πΊ) ∈ (ACSβ€˜π΅))
 
Theoremelnmz 18840* Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {π‘₯ ∈ 𝑋 ∣ βˆ€π‘¦ ∈ 𝑋 ((π‘₯ + 𝑦) ∈ 𝑆 ↔ (𝑦 + π‘₯) ∈ 𝑆)}    β‡’   (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ βˆ€π‘§ ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
 
Theoremnmzbi 18841* Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {π‘₯ ∈ 𝑋 ∣ βˆ€π‘¦ ∈ 𝑋 ((π‘₯ + 𝑦) ∈ 𝑆 ↔ (𝑦 + π‘₯) ∈ 𝑆)}    β‡’   ((𝐴 ∈ 𝑁 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴 + 𝐡) ∈ 𝑆 ↔ (𝐡 + 𝐴) ∈ 𝑆))
 
Theoremnmzsubg 18842* The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {π‘₯ ∈ 𝑋 ∣ βˆ€π‘¦ ∈ 𝑋 ((π‘₯ + 𝑦) ∈ 𝑆 ↔ (𝑦 + π‘₯) ∈ 𝑆)}    &   π‘‹ = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   (𝐺 ∈ Grp β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
 
Theoremssnmz 18843* A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {π‘₯ ∈ 𝑋 ∣ βˆ€π‘¦ ∈ 𝑋 ((π‘₯ + 𝑦) ∈ 𝑆 ↔ (𝑦 + π‘₯) ∈ 𝑆)}    &   π‘‹ = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   (𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 𝑆 βŠ† 𝑁)
 
Theoremisnsg4 18844* A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {π‘₯ ∈ 𝑋 ∣ βˆ€π‘¦ ∈ 𝑋 ((π‘₯ + 𝑦) ∈ 𝑆 ↔ (𝑦 + π‘₯) ∈ 𝑆)}    &   π‘‹ = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   (𝑆 ∈ (NrmSGrpβ€˜πΊ) ↔ (𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝑁 = 𝑋))
 
Theoremnmznsg 18845* Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
𝑁 = {π‘₯ ∈ 𝑋 ∣ βˆ€π‘¦ ∈ 𝑋 ((π‘₯ + 𝑦) ∈ 𝑆 ↔ (𝑦 + π‘₯) ∈ 𝑆)}    &   π‘‹ = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &   π» = (𝐺 β†Ύs 𝑁)    β‡’   (𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 𝑆 ∈ (NrmSGrpβ€˜π»))
 
Theorem0nsg 18846 The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
0 = (0gβ€˜πΊ)    β‡’   (𝐺 ∈ Grp β†’ { 0 } ∈ (NrmSGrpβ€˜πΊ))
 
Theoremnsgid 18847 The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐡 = (Baseβ€˜πΊ)    β‡’   (𝐺 ∈ Grp β†’ 𝐡 ∈ (NrmSGrpβ€˜πΊ))
 
Theorem0idnsgd 18848 The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐡 = (Baseβ€˜πΊ)    &    0 = (0gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Grp)    β‡’   (πœ‘ β†’ {{ 0 }, 𝐡} βŠ† (NrmSGrpβ€˜πΊ))
 
Theoremtrivnsgd 18849 The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐡 = (Baseβ€˜πΊ)    &    0 = (0gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Grp)    &   (πœ‘ β†’ 𝐡 = { 0 })    β‡’   (πœ‘ β†’ (NrmSGrpβ€˜πΊ) = {𝐡})
 
Theoremtriv1nsgd 18850 A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐡 = (Baseβ€˜πΊ)    &    0 = (0gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Grp)    &   (πœ‘ β†’ 𝐡 = { 0 })    β‡’   (πœ‘ β†’ (NrmSGrpβ€˜πΊ) β‰ˆ 1o)
 
Theorem1nsgtrivd 18851 A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐡 = (Baseβ€˜πΊ)    &    0 = (0gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ Grp)    &   (πœ‘ β†’ (NrmSGrpβ€˜πΊ) β‰ˆ 1o)    β‡’   (πœ‘ β†’ 𝐡 = { 0 })
 
Theoremreleqg 18852 The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑅 = (𝐺 ~QG 𝑆)    β‡’   Rel 𝑅
 
Theoremeqgfval 18853* Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
𝑋 = (Baseβ€˜πΊ)    &   π‘ = (invgβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &   π‘… = (𝐺 ~QG 𝑆)    β‡’   ((𝐺 ∈ 𝑉 ∧ 𝑆 βŠ† 𝑋) β†’ 𝑅 = {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝑋 ∧ ((π‘β€˜π‘₯) + 𝑦) ∈ 𝑆)})
 
Theoremeqgval 18854 Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Baseβ€˜πΊ)    &   π‘ = (invgβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &   π‘… = (𝐺 ~QG 𝑆)    β‡’   ((𝐺 ∈ 𝑉 ∧ 𝑆 βŠ† 𝑋) β†’ (𝐴𝑅𝐡 ↔ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ ((π‘β€˜π΄) + 𝐡) ∈ 𝑆)))
 
Theoremeqger 18855 The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Baseβ€˜πΊ)    &    ∼ = (𝐺 ~QG π‘Œ)    β‡’   (π‘Œ ∈ (SubGrpβ€˜πΊ) β†’ ∼ Er 𝑋)
 
Theoremeqglact 18856* A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Baseβ€˜πΊ)    &    ∼ = (𝐺 ~QG π‘Œ)    &    + = (+gβ€˜πΊ)    β‡’   ((𝐺 ∈ Grp ∧ π‘Œ βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ [𝐴] ∼ = ((π‘₯ ∈ 𝑋 ↦ (𝐴 + π‘₯)) β€œ π‘Œ))
 
Theoremeqgid 18857 The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Baseβ€˜πΊ)    &    ∼ = (𝐺 ~QG π‘Œ)    &    0 = (0gβ€˜πΊ)    β‡’   (π‘Œ ∈ (SubGrpβ€˜πΊ) β†’ [ 0 ] ∼ = π‘Œ)
 
Theoremeqgen 18858 Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Baseβ€˜πΊ)    &    ∼ = (𝐺 ~QG π‘Œ)    β‡’   ((π‘Œ ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ (𝑋 / ∼ )) β†’ π‘Œ β‰ˆ 𝐴)
 
Theoremeqgcpbl 18859 The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Baseβ€˜πΊ)    &    ∼ = (𝐺 ~QG π‘Œ)    &    + = (+gβ€˜πΊ)    β‡’   (π‘Œ ∈ (NrmSGrpβ€˜πΊ) β†’ ((𝐴 ∼ 𝐢 ∧ 𝐡 ∼ 𝐷) β†’ (𝐴 + 𝐡) ∼ (𝐢 + 𝐷)))
 
Theoremqusgrp 18860 If π‘Œ is a normal subgroup of 𝐺, then 𝐻 = 𝐺 / π‘Œ is a group, called the quotient of 𝐺 by π‘Œ. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    β‡’   (𝑆 ∈ (NrmSGrpβ€˜πΊ) β†’ 𝐻 ∈ Grp)
 
Theoremquseccl 18861 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   π‘‰ = (Baseβ€˜πΊ)    &   π΅ = (Baseβ€˜π»)    β‡’   ((𝑆 ∈ (NrmSGrpβ€˜πΊ) ∧ 𝑋 ∈ 𝑉) β†’ [𝑋](𝐺 ~QG 𝑆) ∈ 𝐡)
 
Theoremqusadd 18862 Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   π‘‰ = (Baseβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &    ✚ = (+gβ€˜π»)    β‡’   ((𝑆 ∈ (NrmSGrpβ€˜πΊ) ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ([𝑋](𝐺 ~QG 𝑆) ✚ [π‘Œ](𝐺 ~QG 𝑆)) = [(𝑋 + π‘Œ)](𝐺 ~QG 𝑆))
 
Theoremqus0 18863 Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &    0 = (0gβ€˜πΊ)    β‡’   (𝑆 ∈ (NrmSGrpβ€˜πΊ) β†’ [ 0 ](𝐺 ~QG 𝑆) = (0gβ€˜π»))
 
Theoremqusinv 18864 Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   π‘‰ = (Baseβ€˜πΊ)    &   πΌ = (invgβ€˜πΊ)    &   π‘ = (invgβ€˜π»)    β‡’   ((𝑆 ∈ (NrmSGrpβ€˜πΊ) ∧ 𝑋 ∈ 𝑉) β†’ (π‘β€˜[𝑋](𝐺 ~QG 𝑆)) = [(πΌβ€˜π‘‹)](𝐺 ~QG 𝑆))
 
Theoremqussub 18865 Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   π‘‰ = (Baseβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    &   π‘ = (-gβ€˜π»)    β‡’   ((𝑆 ∈ (NrmSGrpβ€˜πΊ) ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ([𝑋](𝐺 ~QG 𝑆)𝑁[π‘Œ](𝐺 ~QG 𝑆)) = [(𝑋 βˆ’ π‘Œ)](𝐺 ~QG 𝑆))
 
Theoremlagsubg2 18866 Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
𝑋 = (Baseβ€˜πΊ)    &    ∼ = (𝐺 ~QG π‘Œ)    &   (πœ‘ β†’ π‘Œ ∈ (SubGrpβ€˜πΊ))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ (β™―β€˜π‘‹) = ((β™―β€˜(𝑋 / ∼ )) Β· (β™―β€˜π‘Œ)))
 
Theoremlagsubg 18867 Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
𝑋 = (Baseβ€˜πΊ)    β‡’   ((π‘Œ ∈ (SubGrpβ€˜πΊ) ∧ 𝑋 ∈ Fin) β†’ (β™―β€˜π‘Œ) βˆ₯ (β™―β€˜π‘‹))
 
10.2.4  Cyclic monoids and groups

This section contains some preliminary results about cyclic monoids and groups before the class CycGrp of cyclic groups (see df-cyg 19527) is defined in the context of Abelian groups.

 
Theoremcycsubmel 18868* Characterization of an element of the set of nonnegative integer powers of an element 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.)
𝐡 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &   πΉ = (π‘₯ ∈ β„•0 ↦ (π‘₯ Β· 𝐴))    &   πΆ = ran 𝐹    β‡’   (𝑋 ∈ 𝐢 ↔ βˆƒπ‘– ∈ β„•0 𝑋 = (𝑖 Β· 𝐴))
 
Theoremcycsubmcl 18869* The set of nonnegative integer powers of an element 𝐴 contains 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.)
𝐡 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &   πΉ = (π‘₯ ∈ β„•0 ↦ (π‘₯ Β· 𝐴))    &   πΆ = ran 𝐹    β‡’   (𝐴 ∈ 𝐡 β†’ 𝐴 ∈ 𝐢)
 
Theoremcycsubm 18870* The set of nonnegative integer powers of an element 𝐴 of a monoid forms a submonoid containing 𝐴 (see cycsubmcl 18869), called the cyclic monoid generated by the element 𝐴. This corresponds to the statement in [Lang] p. 6. (Contributed by AV, 28-Dec-2023.)
𝐡 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &   πΉ = (π‘₯ ∈ β„•0 ↦ (π‘₯ Β· 𝐴))    &   πΆ = ran 𝐹    β‡’   ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐡) β†’ 𝐢 ∈ (SubMndβ€˜πΊ))
 
Theoremcyccom 18871* Condition for an operation to be commutative. Lemma for cycsubmcom 18872 and cygabl 19540. Formerly part of proof for cygabl 19540. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 20-Jan-2024.)
(πœ‘ β†’ βˆ€π‘ ∈ 𝐢 βˆƒπ‘₯ ∈ 𝑍 𝑐 = (π‘₯ Β· 𝐴))    &   (πœ‘ β†’ βˆ€π‘š ∈ 𝑍 βˆ€π‘› ∈ 𝑍 ((π‘š + 𝑛) Β· 𝐴) = ((π‘š Β· 𝐴) + (𝑛 Β· 𝐴)))    &   (πœ‘ β†’ 𝑋 ∈ 𝐢)    &   (πœ‘ β†’ π‘Œ ∈ 𝐢)    &   (πœ‘ β†’ 𝑍 βŠ† β„‚)    β‡’   (πœ‘ β†’ (𝑋 + π‘Œ) = (π‘Œ + 𝑋))
 
Theoremcycsubmcom 18872* The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.)
𝐡 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &   πΉ = (π‘₯ ∈ β„•0 ↦ (π‘₯ Β· 𝐴))    &   πΆ = ran 𝐹    &    + = (+gβ€˜πΊ)    β‡’   (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐡) ∧ (𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢)) β†’ (𝑋 + π‘Œ) = (π‘Œ + 𝑋))
 
Theoremcycsubggend 18873* The cyclic subgroup generated by 𝐴 includes its generator. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐡 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &   πΉ = (𝑛 ∈ β„€ ↦ (𝑛 Β· 𝐴))    &   (πœ‘ β†’ 𝐴 ∈ 𝐡)    β‡’   (πœ‘ β†’ 𝐴 ∈ ran 𝐹)
 
Theoremcycsubgcl 18874* The set of integer powers of an element 𝐴 of a group forms a subgroup containing 𝐴, called the cyclic group generated by the element 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &   πΉ = (π‘₯ ∈ β„€ ↦ (π‘₯ Β· 𝐴))    β‡’   ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) β†’ (ran 𝐹 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ ran 𝐹))
 
Theoremcycsubgss 18875* The cyclic subgroup generated by an element 𝐴 is a subset of any subgroup containing 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &   πΉ = (π‘₯ ∈ β„€ ↦ (π‘₯ Β· 𝐴))    β‡’   ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑆) β†’ ran 𝐹 βŠ† 𝑆)
 
Theoremcycsubg 18876* The cyclic group generated by 𝐴 is the smallest subgroup containing 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &   πΉ = (π‘₯ ∈ β„€ ↦ (π‘₯ Β· 𝐴))    β‡’   ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) β†’ ran 𝐹 = ∩ {𝑠 ∈ (SubGrpβ€˜πΊ) ∣ 𝐴 ∈ 𝑠})
 
Theoremcycsubgcld 18877* The cyclic subgroup generated by 𝐴 is a subgroup. Deduction related to cycsubgcl 18874. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐡 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &   πΉ = (𝑛 ∈ β„€ ↦ (𝑛 Β· 𝐴))    &   (πœ‘ β†’ 𝐺 ∈ Grp)    &   (πœ‘ β†’ 𝐴 ∈ 𝐡)    β‡’   (πœ‘ β†’ ran 𝐹 ∈ (SubGrpβ€˜πΊ))
 
Theoremcycsubg2 18878* The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝑋 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &   πΉ = (π‘₯ ∈ β„€ ↦ (π‘₯ Β· 𝐴))    &   πΎ = (mrClsβ€˜(SubGrpβ€˜πΊ))    β‡’   ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) β†’ (πΎβ€˜{𝐴}) = ran 𝐹)
 
Theoremcycsubg2cl 18879 Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝑋 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &   πΎ = (mrClsβ€˜(SubGrpβ€˜πΊ))    β‡’   ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ β„€) β†’ (𝑁 Β· 𝐴) ∈ (πΎβ€˜{𝐴}))
 
10.2.5  Elementary theory of group homomorphisms
 
Syntaxcghm 18880 Extend class notation with the generator of group hom-sets.
class GrpHom
 
Definitiondf-ghm 18881* A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014.)
GrpHom = (𝑠 ∈ Grp, 𝑑 ∈ Grp ↦ {𝑔 ∣ [(Baseβ€˜π‘ ) / 𝑀](𝑔:π‘€βŸΆ(Baseβ€˜π‘‘) ∧ βˆ€π‘₯ ∈ 𝑀 βˆ€π‘¦ ∈ 𝑀 (π‘”β€˜(π‘₯(+gβ€˜π‘ )𝑦)) = ((π‘”β€˜π‘₯)(+gβ€˜π‘‘)(π‘”β€˜π‘¦)))})
 
Theoremreldmghm 18882 Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Rel dom GrpHom
 
Theoremisghm 18883* Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝑋 = (Baseβ€˜π‘†)    &   π‘Œ = (Baseβ€˜π‘‡)    &    + = (+gβ€˜π‘†)    &    ⨣ = (+gβ€˜π‘‡)    β‡’   (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘’ ∈ 𝑋 βˆ€π‘£ ∈ 𝑋 (πΉβ€˜(𝑒 + 𝑣)) = ((πΉβ€˜π‘’) ⨣ (πΉβ€˜π‘£)))))
 
Theoremisghm3 18884* Property of a group homomorphism, similar to ismhm 18481. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝑋 = (Baseβ€˜π‘†)    &   π‘Œ = (Baseβ€˜π‘‡)    &    + = (+gβ€˜π‘†)    &    ⨣ = (+gβ€˜π‘‡)    β‡’   ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) β†’ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘’ ∈ 𝑋 βˆ€π‘£ ∈ 𝑋 (πΉβ€˜(𝑒 + 𝑣)) = ((πΉβ€˜π‘’) ⨣ (πΉβ€˜π‘£)))))
 
Theoremghmgrp1 18885 A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
(𝐹 ∈ (𝑆 GrpHom 𝑇) β†’ 𝑆 ∈ Grp)
 
Theoremghmgrp2 18886 A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
(𝐹 ∈ (𝑆 GrpHom 𝑇) β†’ 𝑇 ∈ Grp)
 
Theoremghmf 18887 A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝑋 = (Baseβ€˜π‘†)    &   π‘Œ = (Baseβ€˜π‘‡)    β‡’   (𝐹 ∈ (𝑆 GrpHom 𝑇) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
 
Theoremghmlin 18888 A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝑋 = (Baseβ€˜π‘†)    &    + = (+gβ€˜π‘†)    &    ⨣ = (+gβ€˜π‘‡)    β‡’   ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ π‘ˆ ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) β†’ (πΉβ€˜(π‘ˆ + 𝑉)) = ((πΉβ€˜π‘ˆ) ⨣ (πΉβ€˜π‘‰)))
 
Theoremghmid 18889 A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.)
π‘Œ = (0gβ€˜π‘†)    &    0 = (0gβ€˜π‘‡)    β‡’   (𝐹 ∈ (𝑆 GrpHom 𝑇) β†’ (πΉβ€˜π‘Œ) = 0 )
 
Theoremghminv 18890 A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝐡 = (Baseβ€˜π‘†)    &   π‘€ = (invgβ€˜π‘†)    &   π‘ = (invgβ€˜π‘‡)    β‡’   ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜(π‘€β€˜π‘‹)) = (π‘β€˜(πΉβ€˜π‘‹)))
 
Theoremghmsub 18891 Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝐡 = (Baseβ€˜π‘†)    &    βˆ’ = (-gβ€˜π‘†)    &   π‘ = (-gβ€˜π‘‡)    β‡’   ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ π‘ˆ ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) β†’ (πΉβ€˜(π‘ˆ βˆ’ 𝑉)) = ((πΉβ€˜π‘ˆ)𝑁(πΉβ€˜π‘‰)))
 
Theoremisghmd 18892* Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
𝑋 = (Baseβ€˜π‘†)    &   π‘Œ = (Baseβ€˜π‘‡)    &    + = (+gβ€˜π‘†)    &    ⨣ = (+gβ€˜π‘‡)    &   (πœ‘ β†’ 𝑆 ∈ Grp)    &   (πœ‘ β†’ 𝑇 ∈ Grp)    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆπ‘Œ)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (πΉβ€˜(π‘₯ + 𝑦)) = ((πΉβ€˜π‘₯) ⨣ (πΉβ€˜π‘¦)))    β‡’   (πœ‘ β†’ 𝐹 ∈ (𝑆 GrpHom 𝑇))
 
Theoremghmmhm 18893 A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
(𝐹 ∈ (𝑆 GrpHom 𝑇) β†’ 𝐹 ∈ (𝑆 MndHom 𝑇))
 
Theoremghmmhmb 18894 Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.)
((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) β†’ (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇))
 
Theoremghmmulg 18895 A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐡 = (Baseβ€˜πΊ)    &    Β· = (.gβ€˜πΊ)    &    Γ— = (.gβ€˜π»)    β‡’   ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ β„€ ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜(𝑁 Β· 𝑋)) = (𝑁 Γ— (πΉβ€˜π‘‹)))
 
Theoremghmrn 18896 The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
(𝐹 ∈ (𝑆 GrpHom 𝑇) β†’ ran 𝐹 ∈ (SubGrpβ€˜π‘‡))
 
Theorem0ghm 18897 The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
0 = (0gβ€˜π‘)    &   π΅ = (Baseβ€˜π‘€)    β‡’   ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) β†’ (𝐡 Γ— { 0 }) ∈ (𝑀 GrpHom 𝑁))
 
Theoremidghm 18898 The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝐡 = (Baseβ€˜πΊ)    β‡’   (𝐺 ∈ Grp β†’ ( I β†Ύ 𝐡) ∈ (𝐺 GrpHom 𝐺))
 
Theoremresghm 18899 Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
π‘ˆ = (𝑆 β†Ύs 𝑋)    β‡’   ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrpβ€˜π‘†)) β†’ (𝐹 β†Ύ 𝑋) ∈ (π‘ˆ GrpHom 𝑇))
 
Theoremresghm2 18900 One direction of resghm2b 18901. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
π‘ˆ = (𝑇 β†Ύs 𝑋)    β‡’   ((𝐹 ∈ (𝑆 GrpHom π‘ˆ) ∧ 𝑋 ∈ (SubGrpβ€˜π‘‡)) β†’ 𝐹 ∈ (𝑆 GrpHom 𝑇))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46765
  Copyright terms: Public domain < Previous  Next >