| Metamath
Proof Explorer Theorem List (p. 189 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | frmdup3 18801* | Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑈 = (varFMnd‘𝐼) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) | ||
According to Wikipedia ("Endomorphism", 25-Jan-2024, https://en.wikipedia.org/wiki/Endomorphism) "An endofunction is a function whose domain is equal to its codomain.". An endofunction is sometimes also called "self-mapping" (see https://www.wikidata.org/wiki/Q1691962) or "self-map" (see https://mathworld.wolfram.com/Self-Map.html), in German "Selbstabbildung" (see https://de.wikipedia.org/wiki/Selbstabbildung). | ||
| Syntax | cefmnd 18802 | Extend class notation to include the class of monoids of endofunctions. |
| class EndoFMnd | ||
| Definition | df-efmnd 18803* | Define the monoid of endofunctions on set 𝑥. We represent the monoid as the set of functions from 𝑥 to itself ((𝑥 ↑m 𝑥)) under function composition, and topologize it as a function space assuming the set is discrete. Analogous to the former definition of SymGrp, see df-symg 19307 and symgvalstruct 19334. (Contributed by AV, 25-Jan-2024.) |
| ⊢ EndoFMnd = (𝑥 ∈ V ↦ ⦋(𝑥 ↑m 𝑥) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝑥 × {𝒫 𝑥}))〉}) | ||
| Theorem | efmnd 18804* | The monoid of endofunctions on set 𝐴. (Contributed by AV, 25-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (𝐴 ↑m 𝐴) & ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) & ⊢ 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) | ||
| Theorem | efmndbas 18805 | The base set of the monoid of endofunctions on class 𝐴. (Contributed by AV, 25-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = (𝐴 ↑m 𝐴) | ||
| Theorem | efmndbasabf 18806* | The base set of the monoid of endofunctions on class 𝐴 is the set of functions from 𝐴 into itself. (Contributed by AV, 29-Mar-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = {𝑓 ∣ 𝑓:𝐴⟶𝐴} | ||
| Theorem | elefmndbas 18807 | Two ways of saying a function is a mapping of 𝐴 to itself. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐴)) | ||
| Theorem | elefmndbas2 18808 | Two ways of saying a function is a mapping of 𝐴 to itself. (Contributed by AV, 27-Jan-2024.) (Proof shortened by AV, 29-Mar-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐴)) | ||
| Theorem | efmndbasf 18809 | Elements in the monoid of endofunctions on 𝐴 are functions from 𝐴 into itself. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴⟶𝐴) | ||
| Theorem | efmndhash 18810 | The monoid of endofunctions on 𝑛 objects has cardinality 𝑛↑𝑛. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → (♯‘𝐵) = ((♯‘𝐴)↑(♯‘𝐴))) | ||
| Theorem | efmndbasfi 18811 | The monoid of endofunctions on a finite set 𝐴 is finite. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → 𝐵 ∈ Fin) | ||
| Theorem | efmndfv 18812 | The function value of an endofunction. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ 𝐴) | ||
| Theorem | efmndtset 18813 | The topology of the monoid of endofunctions on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just endofunctions - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by AV, 25-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) | ||
| Theorem | efmndplusg 18814* | The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | ||
| Theorem | efmndov 18815 | The value of the group operation of the monoid of endofunctions on 𝐴. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) | ||
| Theorem | efmndcl 18816 | The group operation of the monoid of endofunctions on 𝐴 is closed. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | efmndtopn 18817 | The topology of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝑋) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → ((∏t‘(𝑋 × {𝒫 𝑋})) ↾t 𝐵) = (TopOpen‘𝐺)) | ||
| Theorem | symggrplem 18818* | Lemma for symggrp 19337 and efmndsgrp 18820. Conditions for an operation to be associative. Formerly part of proof for symggrp 19337. (Contributed by AV, 28-Jan-2024.) |
| ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
| Theorem | efmndmgm 18819 | The monoid of endofunctions on a class 𝐴 is a magma. (Contributed by AV, 28-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ 𝐺 ∈ Mgm | ||
| Theorem | efmndsgrp 18820 | The monoid of endofunctions on a class 𝐴 is a semigroup. (Contributed by AV, 28-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ 𝐺 ∈ Smgrp | ||
| Theorem | ielefmnd 18821 | The identity function restricted to a set 𝐴 is an element of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) | ||
| Theorem | efmndid 18822 | The identity function restricted to a set 𝐴 is the identity element of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) | ||
| Theorem | efmndmnd 18823 | The monoid of endofunctions on a set 𝐴 is actually a monoid. (Contributed by AV, 31-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) | ||
| Theorem | efmnd0nmnd 18824 | Even the monoid of endofunctions on the empty set is actually a monoid. (Contributed by AV, 31-Jan-2024.) |
| ⊢ (EndoFMnd‘∅) ∈ Mnd | ||
| Theorem | efmndbas0 18825 | The base set of the monoid of endofunctions on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Jan-2024.) (Proof shortened by AV, 31-Mar-2024.) |
| ⊢ (Base‘(EndoFMnd‘∅)) = {∅} | ||
| Theorem | efmnd1hash 18826 | The monoid of endofunctions on a singleton has cardinality 1. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → (♯‘𝐵) = 1) | ||
| Theorem | efmnd1bas 18827 | The monoid of endofunctions on a singleton consists of the identity only. (Contributed by AV, 31-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {{〈𝐼, 𝐼〉}}) | ||
| Theorem | efmnd2hash 18828 | The monoid of endofunctions on a (proper) pair has cardinality 4. (Contributed by AV, 18-Feb-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼, 𝐽} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐵) = 4) | ||
| Theorem | submefmnd 18829* | If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 19346. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐹 = (Base‘𝑆) ⇒ ⊢ (𝐴 ∈ 𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubMnd‘𝑀))) | ||
| Theorem | sursubmefmnd 18830* | The set of surjective endofunctions on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → {ℎ ∣ ℎ:𝐴–onto→𝐴} ∈ (SubMnd‘𝑀)) | ||
| Theorem | injsubmefmnd 18831* | The set of injective endofunctions on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → {ℎ ∣ ℎ:𝐴–1-1→𝐴} ∈ (SubMnd‘𝑀)) | ||
| Theorem | idressubmefmnd 18832 | The singleton containing only the identity function restricted to a set is a submonoid of the monoid of endofunctions on this set. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺)) | ||
| Theorem | idresefmnd 18833 | The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) | ||
| Theorem | smndex1ibas 18834 | The modulo function 𝐼 is an endofunction on ℕ0. (Contributed by AV, 12-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ⇒ ⊢ 𝐼 ∈ (Base‘𝑀) | ||
| Theorem | smndex1iidm 18835* | The modulo function 𝐼 is idempotent. (Contributed by AV, 12-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ⇒ ⊢ (𝐼 ∘ 𝐼) = 𝐼 | ||
| Theorem | smndex1gbas 18836* | The constant functions (𝐺‘𝐾) are endofunctions on ℕ0. (Contributed by AV, 12-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) ⇒ ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) ∈ (Base‘𝑀)) | ||
| Theorem | smndex1gid 18837* | The composition of a constant function (𝐺‘𝐾) with another endofunction on ℕ0 results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) ⇒ ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) | ||
| Theorem | smndex1igid 18838* | The composition of the modulo function 𝐼 and a constant function (𝐺‘𝐾) results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) ⇒ ⊢ (𝐾 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝐾)) = (𝐺‘𝐾)) | ||
| Theorem | smndex1basss 18839* | The modulo function 𝐼 and the constant functions (𝐺‘𝐾) are endofunctions on ℕ0. (Contributed by AV, 12-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ⇒ ⊢ 𝐵 ⊆ (Base‘𝑀) | ||
| Theorem | smndex1bas 18840* | The base set of the monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾). (Contributed by AV, 12-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ (Base‘𝑆) = 𝐵 | ||
| Theorem | smndex1mgm 18841* | The monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾) is a magma. (Contributed by AV, 14-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ 𝑆 ∈ Mgm | ||
| Theorem | smndex1sgrp 18842* | The monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾) is a semigroup. (Contributed by AV, 14-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ 𝑆 ∈ Smgrp | ||
| Theorem | smndex1mndlem 18843* | Lemma for smndex1mnd 18844 and smndex1id 18845. (Contributed by AV, 16-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ (𝑋 ∈ 𝐵 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) | ||
| Theorem | smndex1mnd 18844* | The monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾) is a monoid. (Contributed by AV, 16-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ 𝑆 ∈ Mnd | ||
| Theorem | smndex1id 18845* | The modulo function 𝐼 is the identity of the monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾). (Contributed by AV, 16-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ 𝐼 = (0g‘𝑆) | ||
| Theorem | smndex1n0mnd 18846* | The identity of the monoid 𝑀 of endofunctions on set ℕ0 is not contained in the base set of the constructed monoid 𝑆. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ (0g‘𝑀) ∉ 𝐵 | ||
| Theorem | nsmndex1 18847* | The base set 𝐵 of the constructed monoid 𝑆 is not a submonoid of the monoid 𝑀 of endofunctions on set ℕ0, although 𝑀 ∈ Mnd and 𝑆 ∈ Mnd and 𝐵 ⊆ (Base‘𝑀) hold. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) & ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) & ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) & ⊢ 𝑆 = (𝑀 ↾s 𝐵) ⇒ ⊢ 𝐵 ∉ (SubMnd‘𝑀) | ||
| Theorem | smndex2dbas 18848 | The doubling function 𝐷 is an endofunction on ℕ0. (Contributed by AV, 18-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) ⇒ ⊢ 𝐷 ∈ 𝐵 | ||
| Theorem | smndex2dnrinv 18849 | The doubling function 𝐷 has no right inverse in the monoid of endofunctions on ℕ0. (Contributed by AV, 18-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) ⇒ ⊢ ∀𝑓 ∈ 𝐵 (𝐷 ∘ 𝑓) ≠ 0 | ||
| Theorem | smndex2hbas 18850 | The halving functions 𝐻 are endofunctions on ℕ0. (Contributed by AV, 18-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)) ⇒ ⊢ 𝐻 ∈ 𝐵 | ||
| Theorem | smndex2dlinvh 18851* | The halving functions 𝐻 are left inverses of the doubling function 𝐷. (Contributed by AV, 18-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘ℕ0) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)) ⇒ ⊢ (𝐻 ∘ 𝐷) = 0 | ||
| Theorem | mgm2nsgrplem1 18852* | Lemma 1 for mgm2nsgrp 18856: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18589). (Contributed by AV, 27-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) | ||
| Theorem | mgm2nsgrplem2 18853* | Lemma 2 for mgm2nsgrp 18856. (Contributed by AV, 27-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ⚬ 𝐴) ⚬ 𝐵) = 𝐴) | ||
| Theorem | mgm2nsgrplem3 18854* | Lemma 3 for mgm2nsgrp 18856. (Contributed by AV, 28-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⚬ (𝐴 ⚬ 𝐵)) = 𝐵) | ||
| Theorem | mgm2nsgrplem4 18855* | Lemma 4 for mgm2nsgrp 18856: M is not a semigroup. (Contributed by AV, 28-Jan-2020.) (Proof shortened by AV, 31-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) ⇒ ⊢ ((♯‘𝑆) = 2 → 𝑀 ∉ Smgrp) | ||
| Theorem | mgm2nsgrp 18856* | A small magma (with two elements) which is not a semigroup. (Contributed by AV, 28-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) ⇒ ⊢ ((♯‘𝑆) = 2 → (𝑀 ∈ Mgm ∧ 𝑀 ∉ Smgrp)) | ||
| Theorem | sgrp2nmndlem1 18857* | Lemma 1 for sgrp2nmnd 18864: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18589). (Contributed by AV, 29-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) | ||
| Theorem | sgrp2nmndlem2 18858* | Lemma 2 for sgrp2nmnd 18864. (Contributed by AV, 29-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ⚬ 𝐶) = 𝐴) | ||
| Theorem | sgrp2nmndlem3 18859* | Lemma 3 for sgrp2nmnd 18864. (Contributed by AV, 29-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) | ||
| Theorem | sgrp2rid2 18860* | A small semigroup (with two elements) with two right identities which are different if 𝐴 ≠ 𝐵. (Contributed by AV, 10-Feb-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑦 ⚬ 𝑥) = 𝑦) | ||
| Theorem | sgrp2rid2ex 18861* | A small semigroup (with two elements) with two right identities which are different. (Contributed by AV, 10-Feb-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((♯‘𝑆) = 2 → ∃𝑥 ∈ 𝑆 ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ≠ 𝑧 ∧ (𝑦 ⚬ 𝑥) = 𝑦 ∧ (𝑦 ⚬ 𝑧) = 𝑦)) | ||
| Theorem | sgrp2nmndlem4 18862* | Lemma 4 for sgrp2nmnd 18864: M is a semigroup. (Contributed by AV, 29-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) ⇒ ⊢ ((♯‘𝑆) = 2 → 𝑀 ∈ Smgrp) | ||
| Theorem | sgrp2nmndlem5 18863* | Lemma 5 for sgrp2nmnd 18864: M is not a monoid. (Contributed by AV, 29-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) ⇒ ⊢ ((♯‘𝑆) = 2 → 𝑀 ∉ Mnd) | ||
| Theorem | sgrp2nmnd 18864* | A small semigroup (with two elements) which is not a monoid. (Contributed by AV, 26-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} & ⊢ (Base‘𝑀) = 𝑆 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) ⇒ ⊢ ((♯‘𝑆) = 2 → (𝑀 ∈ Smgrp ∧ 𝑀 ∉ Mnd)) | ||
| Theorem | mgmnsgrpex 18865 | There is a magma which is not a semigroup. (Contributed by AV, 29-Jan-2020.) |
| ⊢ ∃𝑚 ∈ Mgm 𝑚 ∉ Smgrp | ||
| Theorem | sgrpnmndex 18866 | There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020.) |
| ⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd | ||
| Theorem | sgrpssmgm 18867 | The class of all semigroups is a proper subclass of the class of all magmas. (Contributed by AV, 29-Jan-2020.) |
| ⊢ Smgrp ⊊ Mgm | ||
| Theorem | mndsssgrp 18868 | The class of all monoids is a proper subclass of the class of all semigroups. (Contributed by AV, 29-Jan-2020.) |
| ⊢ Mnd ⊊ Smgrp | ||
| Theorem | pwmndgplus 18869* | The operation of the monoid of the power set of a class 𝐴 under union. (Contributed by AV, 27-Feb-2024.) |
| ⊢ (Base‘𝑀) = 𝒫 𝐴 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) ⇒ ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴) → (𝑋(+g‘𝑀)𝑌) = (𝑋 ∪ 𝑌)) | ||
| Theorem | pwmndid 18870* | The identity of the monoid of the power set of a class 𝐴 under union is the empty set. (Contributed by AV, 27-Feb-2024.) |
| ⊢ (Base‘𝑀) = 𝒫 𝐴 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) ⇒ ⊢ (0g‘𝑀) = ∅ | ||
| Theorem | pwmnd 18871* | The power set of a class 𝐴 is a monoid under union. (Contributed by AV, 27-Feb-2024.) |
| ⊢ (Base‘𝑀) = 𝒫 𝐴 & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥 ∪ 𝑦)) ⇒ ⊢ 𝑀 ∈ Mnd | ||
| Syntax | cgrp 18872 | Extend class notation with class of all groups. |
| class Grp | ||
| Syntax | cminusg 18873 | Extend class notation with inverse of group element. |
| class invg | ||
| Syntax | csg 18874 | Extend class notation with group subtraction (or division) operation. |
| class -g | ||
| Definition | df-grp 18875* | Define class of all groups. A group is a monoid (df-mnd 18669) whose internal operation is such that every element admits a left inverse (which can be proven to be a two-sided inverse). Thus, a group 𝐺 is an algebraic structure formed from a base set of elements (notated (Base‘𝐺) per df-base 17187) and an internal group operation (notated (+g‘𝐺) per df-plusg 17240). The operation combines any two elements of the group base set and must satisfy the 4 group axioms: closure (the result of the group operation must always be a member of the base set, see grpcl 18880), associativity (so ((𝑎+g𝑏)+g𝑐) = (𝑎+g(𝑏+g𝑐)) for any a, b, c, see grpass 18881), identity (there must be an element 𝑒 = (0g‘𝐺) such that 𝑒+g𝑎 = 𝑎+g𝑒 = 𝑎 for any a), and inverse (for each element a in the base set, there must be an element 𝑏 = invg𝑎 in the base set such that 𝑎+g𝑏 = 𝑏+g𝑎 = 𝑒). It can be proven that the identity element is unique (grpideu 18883). Groups need not be commutative; a commutative group is an Abelian group (see df-abl 19720). Subgroups can often be formed from groups, see df-subg 19062. An example of an (Abelian) group is the set of complex numbers ℂ over the group operation + (addition), as proven in cnaddablx 19805; an Abelian group is a group as proven in ablgrp 19722. Other structures include groups, including unital rings (df-ring 20151) and fields (df-field 20648). (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} | ||
| Definition | df-minusg 18876* | Define inverse of group element. (Contributed by NM, 24-Aug-2011.) |
| ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑤 ∈ (Base‘𝑔)(𝑤(+g‘𝑔)𝑥) = (0g‘𝑔)))) | ||
| Definition | df-sbg 18877* | Define group subtraction (also called division for multiplicative groups). (Contributed by NM, 31-Mar-2014.) |
| ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) | ||
| Theorem | isgrp 18878* | The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∃𝑚 ∈ 𝐵 (𝑚 + 𝑎) = 0 )) | ||
| Theorem | grpmnd 18879 | A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | ||
| Theorem | grpcl 18880 | Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | grpass 18881 | A group operation is associative. (Contributed by NM, 14-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
| Theorem | grpinvex 18882* | Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) | ||
| Theorem | grpideu 18883* | The two-sided identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 8-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)) | ||
| Theorem | grpassd 18884 | A group operation is associative. (Contributed by SN, 29-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
| Theorem | grpmndd 18885 | A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mnd) | ||
| Theorem | grpcld 18886 | Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | grpplusf 18887 | The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | grpplusfo 18888 | The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto→𝐵) | ||
| Theorem | resgrpplusfrn 18889 | The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝐹 = (+𝑓‘𝐻) ⇒ ⊢ ((𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = ran 𝐹) | ||
| Theorem | grppropd 18890* | If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) | ||
| Theorem | grpprop 18891 | If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.) |
| ⊢ (Base‘𝐾) = (Base‘𝐿) & ⊢ (+g‘𝐾) = (+g‘𝐿) ⇒ ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) | ||
| Theorem | grppropstr 18892 | Generalize a specific 2-element group 𝐿 to show that any set 𝐾 with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ (Base‘𝐾) = 𝐵 & ⊢ (+g‘𝐾) = + & ⊢ 𝐿 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) | ||
| Theorem | grpss 18893 | Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 20154, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} & ⊢ 𝑅 ∈ V & ⊢ 𝐺 ⊆ 𝑅 & ⊢ Fun 𝑅 ⇒ ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) | ||
| Theorem | isgrpd2e 18894* | Deduce a group from its properties. In this version of isgrpd2 18895, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 10-Aug-2013.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ (𝜑 → 0 = (0g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
| Theorem | isgrpd2 18895* | Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2730, but we make an exception for theorems such as isgrpd2 18895, ismndd 18690, and islmodd 20779 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ (𝜑 → 0 = (0g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
| Theorem | isgrpde 18896* | Deduce a group from its properties. In this version of isgrpd 18897, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 6-Jan-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 0 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
| Theorem | isgrpd 18897* | Deduce a group from its properties. Unlike isgrpd2 18895, this one goes straight from the base properties rather than going through Mnd. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 0 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
| Theorem | isgrpi 18898* | Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ 0 ∈ 𝐵 & ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) & ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) ⇒ ⊢ 𝐺 ∈ Grp | ||
| Theorem | grpsgrp 18899 | A group is a semigroup. (Contributed by AV, 28-Aug-2021.) |
| ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) | ||
| Theorem | grpmgmd 18900 | A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mgm) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |