| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vrmdfval | Structured version Visualization version GIF version | ||
| Description: The canonical injection from the generating set 𝐼 to the base set of the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| vrmdfval.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
| Ref | Expression |
|---|---|
| vrmdfval | ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrmdfval.u | . 2 ⊢ 𝑈 = (varFMnd‘𝐼) | |
| 2 | df-vrmd 18864 | . . 3 ⊢ varFMnd = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉)) | |
| 3 | mpteq1 5234 | . . 3 ⊢ (𝑖 = 𝐼 → (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉) = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) | |
| 4 | elex 3500 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
| 5 | mptexg 7242 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉) ∈ V) | |
| 6 | 2, 3, 4, 5 | fvmptd3 7038 | . 2 ⊢ (𝐼 ∈ 𝑉 → (varFMnd‘𝐼) = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
| 7 | 1, 6 | eqtrid 2788 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ↦ cmpt 5224 ‘cfv 6560 〈“cs1 14634 varFMndcvrmd 18862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-vrmd 18864 |
| This theorem is referenced by: vrmdval 18871 vrmdf 18872 frgpup3lem 19796 |
| Copyright terms: Public domain | W3C validator |