MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrmdfval Structured version   Visualization version   GIF version

Theorem vrmdfval 18564
Description: The canonical injection from the generating set 𝐼 to the base set of the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
vrmdfval.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
vrmdfval (𝐼𝑉𝑈 = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
Distinct variable groups:   𝑗,𝐼   𝑗,𝑉
Allowed substitution hint:   𝑈(𝑗)

Proof of Theorem vrmdfval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vrmdfval.u . 2 𝑈 = (varFMnd𝐼)
2 df-vrmd 18558 . . 3 varFMnd = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ ⟨“𝑗”⟩))
3 mpteq1 5180 . . 3 (𝑖 = 𝐼 → (𝑗𝑖 ↦ ⟨“𝑗”⟩) = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
4 elex 3459 . . 3 (𝐼𝑉𝐼 ∈ V)
5 mptexg 7136 . . 3 (𝐼𝑉 → (𝑗𝐼 ↦ ⟨“𝑗”⟩) ∈ V)
62, 3, 4, 5fvmptd3 6937 . 2 (𝐼𝑉 → (varFMnd𝐼) = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
71, 6eqtrid 2789 1 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3441  cmpt 5170  cfv 6465  ⟨“cs1 14372  varFMndcvrmd 18556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-vrmd 18558
This theorem is referenced by:  vrmdval  18565  vrmdf  18566  frgpup3lem  19451
  Copyright terms: Public domain W3C validator