MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrmdfval Structured version   Visualization version   GIF version

Theorem vrmdfval 18495
Description: The canonical injection from the generating set 𝐼 to the base set of the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
vrmdfval.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
vrmdfval (𝐼𝑉𝑈 = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
Distinct variable groups:   𝑗,𝐼   𝑗,𝑉
Allowed substitution hint:   𝑈(𝑗)

Proof of Theorem vrmdfval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vrmdfval.u . 2 𝑈 = (varFMnd𝐼)
2 df-vrmd 18489 . . 3 varFMnd = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ ⟨“𝑗”⟩))
3 mpteq1 5167 . . 3 (𝑖 = 𝐼 → (𝑗𝑖 ↦ ⟨“𝑗”⟩) = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
4 elex 3450 . . 3 (𝐼𝑉𝐼 ∈ V)
5 mptexg 7097 . . 3 (𝐼𝑉 → (𝑗𝐼 ↦ ⟨“𝑗”⟩) ∈ V)
62, 3, 4, 5fvmptd3 6898 . 2 (𝐼𝑉 → (varFMnd𝐼) = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
71, 6eqtrid 2790 1 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cmpt 5157  cfv 6433  ⟨“cs1 14300  varFMndcvrmd 18487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-vrmd 18489
This theorem is referenced by:  vrmdval  18496  vrmdf  18497  frgpup3lem  19383
  Copyright terms: Public domain W3C validator