MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrmdfval Structured version   Visualization version   GIF version

Theorem vrmdfval 18839
Description: The canonical injection from the generating set 𝐼 to the base set of the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
vrmdfval.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
vrmdfval (𝐼𝑉𝑈 = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
Distinct variable groups:   𝑗,𝐼   𝑗,𝑉
Allowed substitution hint:   𝑈(𝑗)

Proof of Theorem vrmdfval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vrmdfval.u . 2 𝑈 = (varFMnd𝐼)
2 df-vrmd 18833 . . 3 varFMnd = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ ⟨“𝑗”⟩))
3 mpteq1 5214 . . 3 (𝑖 = 𝐼 → (𝑗𝑖 ↦ ⟨“𝑗”⟩) = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
4 elex 3485 . . 3 (𝐼𝑉𝐼 ∈ V)
5 mptexg 7218 . . 3 (𝐼𝑉 → (𝑗𝐼 ↦ ⟨“𝑗”⟩) ∈ V)
62, 3, 4, 5fvmptd3 7014 . 2 (𝐼𝑉 → (varFMnd𝐼) = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
71, 6eqtrid 2783 1 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  cmpt 5206  cfv 6536  ⟨“cs1 14618  varFMndcvrmd 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-vrmd 18833
This theorem is referenced by:  vrmdval  18840  vrmdf  18841  frgpup3lem  19763
  Copyright terms: Public domain W3C validator