MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrmdfval Structured version   Visualization version   GIF version

Theorem vrmdfval 18759
Description: The canonical injection from the generating set 𝐼 to the base set of the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
vrmdfval.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
vrmdfval (𝐼𝑉𝑈 = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
Distinct variable groups:   𝑗,𝐼   𝑗,𝑉
Allowed substitution hint:   𝑈(𝑗)

Proof of Theorem vrmdfval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vrmdfval.u . 2 𝑈 = (varFMnd𝐼)
2 df-vrmd 18753 . . 3 varFMnd = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ ⟨“𝑗”⟩))
3 mpteq1 5175 . . 3 (𝑖 = 𝐼 → (𝑗𝑖 ↦ ⟨“𝑗”⟩) = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
4 elex 3457 . . 3 (𝐼𝑉𝐼 ∈ V)
5 mptexg 7150 . . 3 (𝐼𝑉 → (𝑗𝐼 ↦ ⟨“𝑗”⟩) ∈ V)
62, 3, 4, 5fvmptd3 6947 . 2 (𝐼𝑉 → (varFMnd𝐼) = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
71, 6eqtrid 2778 1 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ ⟨“𝑗”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5167  cfv 6476  ⟨“cs1 14498  varFMndcvrmd 18751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-vrmd 18753
This theorem is referenced by:  vrmdval  18760  vrmdf  18761  frgpup3lem  19684
  Copyright terms: Public domain W3C validator