| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vrmdfval | Structured version Visualization version GIF version | ||
| Description: The canonical injection from the generating set 𝐼 to the base set of the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| vrmdfval.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
| Ref | Expression |
|---|---|
| vrmdfval | ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrmdfval.u | . 2 ⊢ 𝑈 = (varFMnd‘𝐼) | |
| 2 | df-vrmd 18742 | . . 3 ⊢ varFMnd = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉)) | |
| 3 | mpteq1 5184 | . . 3 ⊢ (𝑖 = 𝐼 → (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉) = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) | |
| 4 | elex 3459 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
| 5 | mptexg 7161 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉) ∈ V) | |
| 6 | 2, 3, 4, 5 | fvmptd3 6957 | . 2 ⊢ (𝐼 ∈ 𝑉 → (varFMnd‘𝐼) = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
| 7 | 1, 6 | eqtrid 2776 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ↦ cmpt 5176 ‘cfv 6486 〈“cs1 14520 varFMndcvrmd 18740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-vrmd 18742 |
| This theorem is referenced by: vrmdval 18749 vrmdf 18750 frgpup3lem 19674 |
| Copyright terms: Public domain | W3C validator |