| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vrmdfval | Structured version Visualization version GIF version | ||
| Description: The canonical injection from the generating set 𝐼 to the base set of the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| vrmdfval.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
| Ref | Expression |
|---|---|
| vrmdfval | ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrmdfval.u | . 2 ⊢ 𝑈 = (varFMnd‘𝐼) | |
| 2 | df-vrmd 18766 | . . 3 ⊢ varFMnd = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉)) | |
| 3 | mpteq1 5184 | . . 3 ⊢ (𝑖 = 𝐼 → (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉) = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) | |
| 4 | elex 3458 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
| 5 | mptexg 7164 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉) ∈ V) | |
| 6 | 2, 3, 4, 5 | fvmptd3 6961 | . 2 ⊢ (𝐼 ∈ 𝑉 → (varFMnd‘𝐼) = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
| 7 | 1, 6 | eqtrid 2780 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5176 ‘cfv 6489 〈“cs1 14510 varFMndcvrmd 18764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-vrmd 18766 |
| This theorem is referenced by: vrmdval 18773 vrmdf 18774 frgpup3lem 19697 |
| Copyright terms: Public domain | W3C validator |