Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vrmdfval | Structured version Visualization version GIF version |
Description: The canonical injection from the generating set 𝐼 to the base set of the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
vrmdfval.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
Ref | Expression |
---|---|
vrmdfval | ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrmdfval.u | . 2 ⊢ 𝑈 = (varFMnd‘𝐼) | |
2 | df-vrmd 18558 | . . 3 ⊢ varFMnd = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉)) | |
3 | mpteq1 5180 | . . 3 ⊢ (𝑖 = 𝐼 → (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉) = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) | |
4 | elex 3459 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
5 | mptexg 7136 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉) ∈ V) | |
6 | 2, 3, 4, 5 | fvmptd3 6937 | . 2 ⊢ (𝐼 ∈ 𝑉 → (varFMnd‘𝐼) = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
7 | 1, 6 | eqtrid 2789 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ↦ cmpt 5170 ‘cfv 6465 〈“cs1 14372 varFMndcvrmd 18556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-vrmd 18558 |
This theorem is referenced by: vrmdval 18565 vrmdf 18566 frgpup3lem 19451 |
Copyright terms: Public domain | W3C validator |