MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdval Structured version   Visualization version   GIF version

Theorem frmdval 18011
Description: Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdval.m 𝑀 = (freeMnd‘𝐼)
frmdval.b (𝐼𝑉𝐵 = Word 𝐼)
frmdval.p + = ( ++ ↾ (𝐵 × 𝐵))
Assertion
Ref Expression
frmdval (𝐼𝑉𝑀 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})

Proof of Theorem frmdval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 frmdval.m . 2 𝑀 = (freeMnd‘𝐼)
2 df-frmd 18009 . . 3 freeMnd = (𝑖 ∈ V ↦ {⟨(Base‘ndx), Word 𝑖⟩, ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩})
3 wrdeq 13883 . . . . . 6 (𝑖 = 𝐼 → Word 𝑖 = Word 𝐼)
4 frmdval.b . . . . . . 7 (𝐼𝑉𝐵 = Word 𝐼)
54eqcomd 2807 . . . . . 6 (𝐼𝑉 → Word 𝐼 = 𝐵)
63, 5sylan9eqr 2858 . . . . 5 ((𝐼𝑉𝑖 = 𝐼) → Word 𝑖 = 𝐵)
76opeq2d 4775 . . . 4 ((𝐼𝑉𝑖 = 𝐼) → ⟨(Base‘ndx), Word 𝑖⟩ = ⟨(Base‘ndx), 𝐵⟩)
86sqxpeqd 5555 . . . . . . 7 ((𝐼𝑉𝑖 = 𝐼) → (Word 𝑖 × Word 𝑖) = (𝐵 × 𝐵))
98reseq2d 5822 . . . . . 6 ((𝐼𝑉𝑖 = 𝐼) → ( ++ ↾ (Word 𝑖 × Word 𝑖)) = ( ++ ↾ (𝐵 × 𝐵)))
10 frmdval.p . . . . . 6 + = ( ++ ↾ (𝐵 × 𝐵))
119, 10eqtr4di 2854 . . . . 5 ((𝐼𝑉𝑖 = 𝐼) → ( ++ ↾ (Word 𝑖 × Word 𝑖)) = + )
1211opeq2d 4775 . . . 4 ((𝐼𝑉𝑖 = 𝐼) → ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩ = ⟨(+g‘ndx), + ⟩)
137, 12preq12d 4640 . . 3 ((𝐼𝑉𝑖 = 𝐼) → {⟨(Base‘ndx), Word 𝑖⟩, ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})
14 elex 3462 . . 3 (𝐼𝑉𝐼 ∈ V)
15 prex 5301 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩} ∈ V
1615a1i 11 . . 3 (𝐼𝑉 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩} ∈ V)
172, 13, 14, 16fvmptd2 6757 . 2 (𝐼𝑉 → (freeMnd‘𝐼) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})
181, 17syl5eq 2848 1 (𝐼𝑉𝑀 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  {cpr 4530  cop 4534   × cxp 5521  cres 5525  cfv 6328  Word cword 13861   ++ cconcat 13917  ndxcnx 16475  Basecbs 16478  +gcplusg 16560  freeMndcfrmd 18007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-frmd 18009
This theorem is referenced by:  frmdbas  18012  frmdplusg  18014
  Copyright terms: Public domain W3C validator