MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdval Structured version   Visualization version   GIF version

Theorem frmdval 18834
Description: Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdval.m 𝑀 = (freeMnd‘𝐼)
frmdval.b (𝐼𝑉𝐵 = Word 𝐼)
frmdval.p + = ( ++ ↾ (𝐵 × 𝐵))
Assertion
Ref Expression
frmdval (𝐼𝑉𝑀 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})

Proof of Theorem frmdval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 frmdval.m . 2 𝑀 = (freeMnd‘𝐼)
2 df-frmd 18832 . . 3 freeMnd = (𝑖 ∈ V ↦ {⟨(Base‘ndx), Word 𝑖⟩, ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩})
3 wrdeq 14537 . . . . . 6 (𝑖 = 𝐼 → Word 𝑖 = Word 𝐼)
4 frmdval.b . . . . . . 7 (𝐼𝑉𝐵 = Word 𝐼)
54eqcomd 2732 . . . . . 6 (𝐼𝑉 → Word 𝐼 = 𝐵)
63, 5sylan9eqr 2788 . . . . 5 ((𝐼𝑉𝑖 = 𝐼) → Word 𝑖 = 𝐵)
76opeq2d 4879 . . . 4 ((𝐼𝑉𝑖 = 𝐼) → ⟨(Base‘ndx), Word 𝑖⟩ = ⟨(Base‘ndx), 𝐵⟩)
86sqxpeqd 5705 . . . . . . 7 ((𝐼𝑉𝑖 = 𝐼) → (Word 𝑖 × Word 𝑖) = (𝐵 × 𝐵))
98reseq2d 5980 . . . . . 6 ((𝐼𝑉𝑖 = 𝐼) → ( ++ ↾ (Word 𝑖 × Word 𝑖)) = ( ++ ↾ (𝐵 × 𝐵)))
10 frmdval.p . . . . . 6 + = ( ++ ↾ (𝐵 × 𝐵))
119, 10eqtr4di 2784 . . . . 5 ((𝐼𝑉𝑖 = 𝐼) → ( ++ ↾ (Word 𝑖 × Word 𝑖)) = + )
1211opeq2d 4879 . . . 4 ((𝐼𝑉𝑖 = 𝐼) → ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩ = ⟨(+g‘ndx), + ⟩)
137, 12preq12d 4741 . . 3 ((𝐼𝑉𝑖 = 𝐼) → {⟨(Base‘ndx), Word 𝑖⟩, ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})
14 elex 3483 . . 3 (𝐼𝑉𝐼 ∈ V)
15 prex 5429 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩} ∈ V
1615a1i 11 . . 3 (𝐼𝑉 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩} ∈ V)
172, 13, 14, 16fvmptd2 7007 . 2 (𝐼𝑉 → (freeMnd‘𝐼) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})
181, 17eqtrid 2778 1 (𝐼𝑉𝑀 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3463  {cpr 4626  cop 4630   × cxp 5671  cres 5675  cfv 6544  Word cword 14515   ++ cconcat 14571  ndxcnx 17188  Basecbs 17206  +gcplusg 17259  freeMndcfrmd 18830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9973  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257  df-n0 12517  df-z 12603  df-uz 12867  df-fz 13531  df-fzo 13674  df-hash 14341  df-word 14516  df-frmd 18832
This theorem is referenced by:  frmdbas  18835  frmdplusg  18837
  Copyright terms: Public domain W3C validator