Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frmdval | Structured version Visualization version GIF version |
Description: Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
frmdval.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
frmdval.b | ⊢ (𝐼 ∈ 𝑉 → 𝐵 = Word 𝐼) |
frmdval.p | ⊢ + = ( ++ ↾ (𝐵 × 𝐵)) |
Ref | Expression |
---|---|
frmdval | ⊢ (𝐼 ∈ 𝑉 → 𝑀 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmdval.m | . 2 ⊢ 𝑀 = (freeMnd‘𝐼) | |
2 | df-frmd 18589 | . . 3 ⊢ freeMnd = (𝑖 ∈ V ↦ {〈(Base‘ndx), Word 𝑖〉, 〈(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))〉}) | |
3 | wrdeq 14348 | . . . . . 6 ⊢ (𝑖 = 𝐼 → Word 𝑖 = Word 𝐼) | |
4 | frmdval.b | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 𝐵 = Word 𝐼) | |
5 | 4 | eqcomd 2743 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → Word 𝐼 = 𝐵) |
6 | 3, 5 | sylan9eqr 2799 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → Word 𝑖 = 𝐵) |
7 | 6 | opeq2d 4832 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → 〈(Base‘ndx), Word 𝑖〉 = 〈(Base‘ndx), 𝐵〉) |
8 | 6 | sqxpeqd 5659 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → (Word 𝑖 × Word 𝑖) = (𝐵 × 𝐵)) |
9 | 8 | reseq2d 5930 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → ( ++ ↾ (Word 𝑖 × Word 𝑖)) = ( ++ ↾ (𝐵 × 𝐵))) |
10 | frmdval.p | . . . . . 6 ⊢ + = ( ++ ↾ (𝐵 × 𝐵)) | |
11 | 9, 10 | eqtr4di 2795 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → ( ++ ↾ (Word 𝑖 × Word 𝑖)) = + ) |
12 | 11 | opeq2d 4832 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → 〈(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))〉 = 〈(+g‘ndx), + 〉) |
13 | 7, 12 | preq12d 4697 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → {〈(Base‘ndx), Word 𝑖〉, 〈(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉}) |
14 | elex 3461 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
15 | prex 5384 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ∈ V | |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ∈ V) |
17 | 2, 13, 14, 16 | fvmptd2 6948 | . 2 ⊢ (𝐼 ∈ 𝑉 → (freeMnd‘𝐼) = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉}) |
18 | 1, 17 | eqtrid 2789 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑀 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3443 {cpr 4583 〈cop 4587 × cxp 5625 ↾ cres 5629 ‘cfv 6488 Word cword 14326 ++ cconcat 14382 ndxcnx 16996 Basecbs 17014 +gcplusg 17064 freeMndcfrmd 18587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-int 4903 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-card 9805 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-n0 12344 df-z 12430 df-uz 12693 df-fz 13350 df-fzo 13493 df-hash 14155 df-word 14327 df-frmd 18589 |
This theorem is referenced by: frmdbas 18592 frmdplusg 18594 |
Copyright terms: Public domain | W3C validator |