MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vs Structured version   Visualization version   GIF version

Definition df-vs 29006
Description: Define vector subtraction on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-vs 𝑣 = ( /𝑔 ∘ +𝑣 )

Detailed syntax breakdown of Definition df-vs
StepHypRef Expression
1 cnsb 28996 . 2 class 𝑣
2 cgs 28899 . . 3 class /𝑔
3 cpv 28992 . . 3 class +𝑣
42, 3ccom 5604 . 2 class ( /𝑔 ∘ +𝑣 )
51, 4wceq 1539 1 wff 𝑣 = ( /𝑔 ∘ +𝑣 )
Colors of variables: wff setvar class
This definition is referenced by:  vsfval  29040
  Copyright terms: Public domain W3C validator