![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vsfval | Structured version Visualization version GIF version |
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vsfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
vsfval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
Ref | Expression |
---|---|
vsfval | ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-vs 30631 | . . . . 5 ⊢ −𝑣 = ( /𝑔 ∘ +𝑣 ) | |
2 | 1 | fveq1i 6921 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = (( /𝑔 ∘ +𝑣 )‘𝑈) |
3 | fo1st 8050 | . . . . . . . 8 ⊢ 1st :V–onto→V | |
4 | fof 6834 | . . . . . . . 8 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 1st :V⟶V |
6 | fco 6771 | . . . . . . 7 ⊢ ((1st :V⟶V ∧ 1st :V⟶V) → (1st ∘ 1st ):V⟶V) | |
7 | 5, 5, 6 | mp2an 691 | . . . . . 6 ⊢ (1st ∘ 1st ):V⟶V |
8 | df-va 30627 | . . . . . . 7 ⊢ +𝑣 = (1st ∘ 1st ) | |
9 | 8 | feq1i 6738 | . . . . . 6 ⊢ ( +𝑣 :V⟶V ↔ (1st ∘ 1st ):V⟶V) |
10 | 7, 9 | mpbir 231 | . . . . 5 ⊢ +𝑣 :V⟶V |
11 | fvco3 7021 | . . . . 5 ⊢ (( +𝑣 :V⟶V ∧ 𝑈 ∈ V) → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) | |
12 | 10, 11 | mpan 689 | . . . 4 ⊢ (𝑈 ∈ V → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
13 | 2, 12 | eqtrid 2792 | . . 3 ⊢ (𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
14 | 0ngrp 30543 | . . . . . 6 ⊢ ¬ ∅ ∈ GrpOp | |
15 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
16 | 15 | rnex 7950 | . . . . . . . . 9 ⊢ ran 𝑔 ∈ V |
17 | 16, 16 | mpoex 8120 | . . . . . . . 8 ⊢ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) ∈ V |
18 | df-gdiv 30528 | . . . . . . . 8 ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | |
19 | 17, 18 | dmmpti 6724 | . . . . . . 7 ⊢ dom /𝑔 = GrpOp |
20 | 19 | eleq2i 2836 | . . . . . 6 ⊢ (∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp) |
21 | 14, 20 | mtbir 323 | . . . . 5 ⊢ ¬ ∅ ∈ dom /𝑔 |
22 | ndmfv 6955 | . . . . 5 ⊢ (¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘∅) = ∅) | |
23 | 21, 22 | mp1i 13 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘∅) = ∅) |
24 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
25 | 24 | fveq2d 6924 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘( +𝑣 ‘𝑈)) = ( /𝑔 ‘∅)) |
26 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ∅) | |
27 | 23, 25, 26 | 3eqtr4rd 2791 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
28 | 13, 27 | pm2.61i 182 | . 2 ⊢ ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
29 | vsfval.3 | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
30 | vsfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
31 | 30 | fveq2i 6923 | . 2 ⊢ ( /𝑔 ‘𝐺) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
32 | 28, 29, 31 | 3eqtr4i 2778 | 1 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 dom cdm 5700 ran crn 5701 ∘ ccom 5704 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1st c1st 8028 GrpOpcgr 30521 invcgn 30523 /𝑔 cgs 30524 +𝑣 cpv 30617 −𝑣 cnsb 30621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-grpo 30525 df-gdiv 30528 df-va 30627 df-vs 30631 |
This theorem is referenced by: nvm 30673 nvmfval 30676 nvnnncan1 30679 nvaddsub 30687 |
Copyright terms: Public domain | W3C validator |