Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vsfval | Structured version Visualization version GIF version |
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vsfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
vsfval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
Ref | Expression |
---|---|
vsfval | ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-vs 29249 | . . . . 5 ⊢ −𝑣 = ( /𝑔 ∘ +𝑣 ) | |
2 | 1 | fveq1i 6826 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = (( /𝑔 ∘ +𝑣 )‘𝑈) |
3 | fo1st 7919 | . . . . . . . 8 ⊢ 1st :V–onto→V | |
4 | fof 6739 | . . . . . . . 8 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 1st :V⟶V |
6 | fco 6675 | . . . . . . 7 ⊢ ((1st :V⟶V ∧ 1st :V⟶V) → (1st ∘ 1st ):V⟶V) | |
7 | 5, 5, 6 | mp2an 689 | . . . . . 6 ⊢ (1st ∘ 1st ):V⟶V |
8 | df-va 29245 | . . . . . . 7 ⊢ +𝑣 = (1st ∘ 1st ) | |
9 | 8 | feq1i 6642 | . . . . . 6 ⊢ ( +𝑣 :V⟶V ↔ (1st ∘ 1st ):V⟶V) |
10 | 7, 9 | mpbir 230 | . . . . 5 ⊢ +𝑣 :V⟶V |
11 | fvco3 6923 | . . . . 5 ⊢ (( +𝑣 :V⟶V ∧ 𝑈 ∈ V) → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) | |
12 | 10, 11 | mpan 687 | . . . 4 ⊢ (𝑈 ∈ V → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
13 | 2, 12 | eqtrid 2788 | . . 3 ⊢ (𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
14 | 0ngrp 29161 | . . . . . 6 ⊢ ¬ ∅ ∈ GrpOp | |
15 | vex 3445 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
16 | 15 | rnex 7827 | . . . . . . . . 9 ⊢ ran 𝑔 ∈ V |
17 | 16, 16 | mpoex 7988 | . . . . . . . 8 ⊢ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) ∈ V |
18 | df-gdiv 29146 | . . . . . . . 8 ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | |
19 | 17, 18 | dmmpti 6628 | . . . . . . 7 ⊢ dom /𝑔 = GrpOp |
20 | 19 | eleq2i 2828 | . . . . . 6 ⊢ (∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp) |
21 | 14, 20 | mtbir 322 | . . . . 5 ⊢ ¬ ∅ ∈ dom /𝑔 |
22 | ndmfv 6860 | . . . . 5 ⊢ (¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘∅) = ∅) | |
23 | 21, 22 | mp1i 13 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘∅) = ∅) |
24 | fvprc 6817 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
25 | 24 | fveq2d 6829 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘( +𝑣 ‘𝑈)) = ( /𝑔 ‘∅)) |
26 | fvprc 6817 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ∅) | |
27 | 23, 25, 26 | 3eqtr4rd 2787 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
28 | 13, 27 | pm2.61i 182 | . 2 ⊢ ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
29 | vsfval.3 | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
30 | vsfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
31 | 30 | fveq2i 6828 | . 2 ⊢ ( /𝑔 ‘𝐺) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
32 | 28, 29, 31 | 3eqtr4i 2774 | 1 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4269 dom cdm 5620 ran crn 5621 ∘ ccom 5624 ⟶wf 6475 –onto→wfo 6477 ‘cfv 6479 (class class class)co 7337 ∈ cmpo 7339 1st c1st 7897 GrpOpcgr 29139 invcgn 29141 /𝑔 cgs 29142 +𝑣 cpv 29235 −𝑣 cnsb 29239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-grpo 29143 df-gdiv 29146 df-va 29245 df-vs 29249 |
This theorem is referenced by: nvm 29291 nvmfval 29294 nvnnncan1 29297 nvaddsub 29305 |
Copyright terms: Public domain | W3C validator |