MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vsfval Structured version   Visualization version   GIF version

Theorem vsfval 29886
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
vsfval.2 𝐺 = ( +𝑣 β€˜π‘ˆ)
vsfval.3 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
Assertion
Ref Expression
vsfval 𝑀 = ( /𝑔 β€˜πΊ)

Proof of Theorem vsfval
Dummy variables π‘₯ 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-vs 29852 . . . . 5 βˆ’π‘£ = ( /𝑔 ∘ +𝑣 )
21fveq1i 6893 . . . 4 ( βˆ’π‘£ β€˜π‘ˆ) = (( /𝑔 ∘ +𝑣 )β€˜π‘ˆ)
3 fo1st 7995 . . . . . . . 8 1st :V–ontoβ†’V
4 fof 6806 . . . . . . . 8 (1st :V–ontoβ†’V β†’ 1st :V⟢V)
53, 4ax-mp 5 . . . . . . 7 1st :V⟢V
6 fco 6742 . . . . . . 7 ((1st :V⟢V ∧ 1st :V⟢V) β†’ (1st ∘ 1st ):V⟢V)
75, 5, 6mp2an 691 . . . . . 6 (1st ∘ 1st ):V⟢V
8 df-va 29848 . . . . . . 7 +𝑣 = (1st ∘ 1st )
98feq1i 6709 . . . . . 6 ( +𝑣 :V⟢V ↔ (1st ∘ 1st ):V⟢V)
107, 9mpbir 230 . . . . 5 +𝑣 :V⟢V
11 fvco3 6991 . . . . 5 (( +𝑣 :V⟢V ∧ π‘ˆ ∈ V) β†’ (( /𝑔 ∘ +𝑣 )β€˜π‘ˆ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ)))
1210, 11mpan 689 . . . 4 (π‘ˆ ∈ V β†’ (( /𝑔 ∘ +𝑣 )β€˜π‘ˆ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ)))
132, 12eqtrid 2785 . . 3 (π‘ˆ ∈ V β†’ ( βˆ’π‘£ β€˜π‘ˆ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ)))
14 0ngrp 29764 . . . . . 6 Β¬ βˆ… ∈ GrpOp
15 vex 3479 . . . . . . . . . 10 𝑔 ∈ V
1615rnex 7903 . . . . . . . . 9 ran 𝑔 ∈ V
1716, 16mpoex 8066 . . . . . . . 8 (π‘₯ ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (π‘₯𝑔((invβ€˜π‘”)β€˜π‘¦))) ∈ V
18 df-gdiv 29749 . . . . . . . 8 /𝑔 = (𝑔 ∈ GrpOp ↦ (π‘₯ ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (π‘₯𝑔((invβ€˜π‘”)β€˜π‘¦))))
1917, 18dmmpti 6695 . . . . . . 7 dom /𝑔 = GrpOp
2019eleq2i 2826 . . . . . 6 (βˆ… ∈ dom /𝑔 ↔ βˆ… ∈ GrpOp)
2114, 20mtbir 323 . . . . 5 Β¬ βˆ… ∈ dom /𝑔
22 ndmfv 6927 . . . . 5 (Β¬ βˆ… ∈ dom /𝑔 β†’ ( /𝑔 β€˜βˆ…) = βˆ…)
2321, 22mp1i 13 . . . 4 (Β¬ π‘ˆ ∈ V β†’ ( /𝑔 β€˜βˆ…) = βˆ…)
24 fvprc 6884 . . . . 5 (Β¬ π‘ˆ ∈ V β†’ ( +𝑣 β€˜π‘ˆ) = βˆ…)
2524fveq2d 6896 . . . 4 (Β¬ π‘ˆ ∈ V β†’ ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ)) = ( /𝑔 β€˜βˆ…))
26 fvprc 6884 . . . 4 (Β¬ π‘ˆ ∈ V β†’ ( βˆ’π‘£ β€˜π‘ˆ) = βˆ…)
2723, 25, 263eqtr4rd 2784 . . 3 (Β¬ π‘ˆ ∈ V β†’ ( βˆ’π‘£ β€˜π‘ˆ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ)))
2813, 27pm2.61i 182 . 2 ( βˆ’π‘£ β€˜π‘ˆ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ))
29 vsfval.3 . 2 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
30 vsfval.2 . . 3 𝐺 = ( +𝑣 β€˜π‘ˆ)
3130fveq2i 6895 . 2 ( /𝑔 β€˜πΊ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ))
3228, 29, 313eqtr4i 2771 1 𝑀 = ( /𝑔 β€˜πΊ)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1542   ∈ wcel 2107  Vcvv 3475  βˆ…c0 4323  dom cdm 5677  ran crn 5678   ∘ ccom 5681  βŸΆwf 6540  β€“ontoβ†’wfo 6542  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  1st c1st 7973  GrpOpcgr 29742  invcgn 29744   /𝑔 cgs 29745   +𝑣 cpv 29838   βˆ’π‘£ cnsb 29842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-grpo 29746  df-gdiv 29749  df-va 29848  df-vs 29852
This theorem is referenced by:  nvm  29894  nvmfval  29897  nvnnncan1  29900  nvaddsub  29908
  Copyright terms: Public domain W3C validator