Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vsfval | Structured version Visualization version GIF version |
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vsfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
vsfval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
Ref | Expression |
---|---|
vsfval | ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-vs 28961 | . . . . 5 ⊢ −𝑣 = ( /𝑔 ∘ +𝑣 ) | |
2 | 1 | fveq1i 6775 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = (( /𝑔 ∘ +𝑣 )‘𝑈) |
3 | fo1st 7851 | . . . . . . . 8 ⊢ 1st :V–onto→V | |
4 | fof 6688 | . . . . . . . 8 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 1st :V⟶V |
6 | fco 6624 | . . . . . . 7 ⊢ ((1st :V⟶V ∧ 1st :V⟶V) → (1st ∘ 1st ):V⟶V) | |
7 | 5, 5, 6 | mp2an 689 | . . . . . 6 ⊢ (1st ∘ 1st ):V⟶V |
8 | df-va 28957 | . . . . . . 7 ⊢ +𝑣 = (1st ∘ 1st ) | |
9 | 8 | feq1i 6591 | . . . . . 6 ⊢ ( +𝑣 :V⟶V ↔ (1st ∘ 1st ):V⟶V) |
10 | 7, 9 | mpbir 230 | . . . . 5 ⊢ +𝑣 :V⟶V |
11 | fvco3 6867 | . . . . 5 ⊢ (( +𝑣 :V⟶V ∧ 𝑈 ∈ V) → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) | |
12 | 10, 11 | mpan 687 | . . . 4 ⊢ (𝑈 ∈ V → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
13 | 2, 12 | eqtrid 2790 | . . 3 ⊢ (𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
14 | 0ngrp 28873 | . . . . . 6 ⊢ ¬ ∅ ∈ GrpOp | |
15 | vex 3436 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
16 | 15 | rnex 7759 | . . . . . . . . 9 ⊢ ran 𝑔 ∈ V |
17 | 16, 16 | mpoex 7920 | . . . . . . . 8 ⊢ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) ∈ V |
18 | df-gdiv 28858 | . . . . . . . 8 ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | |
19 | 17, 18 | dmmpti 6577 | . . . . . . 7 ⊢ dom /𝑔 = GrpOp |
20 | 19 | eleq2i 2830 | . . . . . 6 ⊢ (∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp) |
21 | 14, 20 | mtbir 323 | . . . . 5 ⊢ ¬ ∅ ∈ dom /𝑔 |
22 | ndmfv 6804 | . . . . 5 ⊢ (¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘∅) = ∅) | |
23 | 21, 22 | mp1i 13 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘∅) = ∅) |
24 | fvprc 6766 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
25 | 24 | fveq2d 6778 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘( +𝑣 ‘𝑈)) = ( /𝑔 ‘∅)) |
26 | fvprc 6766 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ∅) | |
27 | 23, 25, 26 | 3eqtr4rd 2789 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
28 | 13, 27 | pm2.61i 182 | . 2 ⊢ ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
29 | vsfval.3 | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
30 | vsfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
31 | 30 | fveq2i 6777 | . 2 ⊢ ( /𝑔 ‘𝐺) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
32 | 28, 29, 31 | 3eqtr4i 2776 | 1 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 dom cdm 5589 ran crn 5590 ∘ ccom 5593 ⟶wf 6429 –onto→wfo 6431 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1st c1st 7829 GrpOpcgr 28851 invcgn 28853 /𝑔 cgs 28854 +𝑣 cpv 28947 −𝑣 cnsb 28951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-grpo 28855 df-gdiv 28858 df-va 28957 df-vs 28961 |
This theorem is referenced by: nvm 29003 nvmfval 29006 nvnnncan1 29009 nvaddsub 29017 |
Copyright terms: Public domain | W3C validator |