MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vsfval Structured version   Visualization version   GIF version

Theorem vsfval 30562
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
vsfval.2 𝐺 = ( +𝑣𝑈)
vsfval.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
vsfval 𝑀 = ( /𝑔𝐺)

Proof of Theorem vsfval
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-vs 30528 . . . . 5 𝑣 = ( /𝑔 ∘ +𝑣 )
21fveq1i 6859 . . . 4 ( −𝑣𝑈) = (( /𝑔 ∘ +𝑣 )‘𝑈)
3 fo1st 7988 . . . . . . . 8 1st :V–onto→V
4 fof 6772 . . . . . . . 8 (1st :V–onto→V → 1st :V⟶V)
53, 4ax-mp 5 . . . . . . 7 1st :V⟶V
6 fco 6712 . . . . . . 7 ((1st :V⟶V ∧ 1st :V⟶V) → (1st ∘ 1st ):V⟶V)
75, 5, 6mp2an 692 . . . . . 6 (1st ∘ 1st ):V⟶V
8 df-va 30524 . . . . . . 7 +𝑣 = (1st ∘ 1st )
98feq1i 6679 . . . . . 6 ( +𝑣 :V⟶V ↔ (1st ∘ 1st ):V⟶V)
107, 9mpbir 231 . . . . 5 +𝑣 :V⟶V
11 fvco3 6960 . . . . 5 (( +𝑣 :V⟶V ∧ 𝑈 ∈ V) → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
1210, 11mpan 690 . . . 4 (𝑈 ∈ V → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
132, 12eqtrid 2776 . . 3 (𝑈 ∈ V → ( −𝑣𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
14 0ngrp 30440 . . . . . 6 ¬ ∅ ∈ GrpOp
15 vex 3451 . . . . . . . . . 10 𝑔 ∈ V
1615rnex 7886 . . . . . . . . 9 ran 𝑔 ∈ V
1716, 16mpoex 8058 . . . . . . . 8 (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) ∈ V
18 df-gdiv 30425 . . . . . . . 8 /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))))
1917, 18dmmpti 6662 . . . . . . 7 dom /𝑔 = GrpOp
2019eleq2i 2820 . . . . . 6 (∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp)
2114, 20mtbir 323 . . . . 5 ¬ ∅ ∈ dom /𝑔
22 ndmfv 6893 . . . . 5 (¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘∅) = ∅)
2321, 22mp1i 13 . . . 4 𝑈 ∈ V → ( /𝑔 ‘∅) = ∅)
24 fvprc 6850 . . . . 5 𝑈 ∈ V → ( +𝑣𝑈) = ∅)
2524fveq2d 6862 . . . 4 𝑈 ∈ V → ( /𝑔 ‘( +𝑣𝑈)) = ( /𝑔 ‘∅))
26 fvprc 6850 . . . 4 𝑈 ∈ V → ( −𝑣𝑈) = ∅)
2723, 25, 263eqtr4rd 2775 . . 3 𝑈 ∈ V → ( −𝑣𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
2813, 27pm2.61i 182 . 2 ( −𝑣𝑈) = ( /𝑔 ‘( +𝑣𝑈))
29 vsfval.3 . 2 𝑀 = ( −𝑣𝑈)
30 vsfval.2 . . 3 𝐺 = ( +𝑣𝑈)
3130fveq2i 6861 . 2 ( /𝑔𝐺) = ( /𝑔 ‘( +𝑣𝑈))
3228, 29, 313eqtr4i 2762 1 𝑀 = ( /𝑔𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  dom cdm 5638  ran crn 5639  ccom 5642  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  GrpOpcgr 30418  invcgn 30420   /𝑔 cgs 30421   +𝑣 cpv 30514  𝑣 cnsb 30518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-grpo 30422  df-gdiv 30425  df-va 30524  df-vs 30528
This theorem is referenced by:  nvm  30570  nvmfval  30573  nvnnncan1  30576  nvaddsub  30584
  Copyright terms: Public domain W3C validator