MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vsfval Structured version   Visualization version   GIF version

Theorem vsfval 30141
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
vsfval.2 𝐺 = ( +𝑣 β€˜π‘ˆ)
vsfval.3 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
Assertion
Ref Expression
vsfval 𝑀 = ( /𝑔 β€˜πΊ)

Proof of Theorem vsfval
Dummy variables π‘₯ 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-vs 30107 . . . . 5 βˆ’π‘£ = ( /𝑔 ∘ +𝑣 )
21fveq1i 6892 . . . 4 ( βˆ’π‘£ β€˜π‘ˆ) = (( /𝑔 ∘ +𝑣 )β€˜π‘ˆ)
3 fo1st 7997 . . . . . . . 8 1st :V–ontoβ†’V
4 fof 6805 . . . . . . . 8 (1st :V–ontoβ†’V β†’ 1st :V⟢V)
53, 4ax-mp 5 . . . . . . 7 1st :V⟢V
6 fco 6741 . . . . . . 7 ((1st :V⟢V ∧ 1st :V⟢V) β†’ (1st ∘ 1st ):V⟢V)
75, 5, 6mp2an 690 . . . . . 6 (1st ∘ 1st ):V⟢V
8 df-va 30103 . . . . . . 7 +𝑣 = (1st ∘ 1st )
98feq1i 6708 . . . . . 6 ( +𝑣 :V⟢V ↔ (1st ∘ 1st ):V⟢V)
107, 9mpbir 230 . . . . 5 +𝑣 :V⟢V
11 fvco3 6990 . . . . 5 (( +𝑣 :V⟢V ∧ π‘ˆ ∈ V) β†’ (( /𝑔 ∘ +𝑣 )β€˜π‘ˆ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ)))
1210, 11mpan 688 . . . 4 (π‘ˆ ∈ V β†’ (( /𝑔 ∘ +𝑣 )β€˜π‘ˆ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ)))
132, 12eqtrid 2784 . . 3 (π‘ˆ ∈ V β†’ ( βˆ’π‘£ β€˜π‘ˆ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ)))
14 0ngrp 30019 . . . . . 6 Β¬ βˆ… ∈ GrpOp
15 vex 3478 . . . . . . . . . 10 𝑔 ∈ V
1615rnex 7905 . . . . . . . . 9 ran 𝑔 ∈ V
1716, 16mpoex 8068 . . . . . . . 8 (π‘₯ ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (π‘₯𝑔((invβ€˜π‘”)β€˜π‘¦))) ∈ V
18 df-gdiv 30004 . . . . . . . 8 /𝑔 = (𝑔 ∈ GrpOp ↦ (π‘₯ ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (π‘₯𝑔((invβ€˜π‘”)β€˜π‘¦))))
1917, 18dmmpti 6694 . . . . . . 7 dom /𝑔 = GrpOp
2019eleq2i 2825 . . . . . 6 (βˆ… ∈ dom /𝑔 ↔ βˆ… ∈ GrpOp)
2114, 20mtbir 322 . . . . 5 Β¬ βˆ… ∈ dom /𝑔
22 ndmfv 6926 . . . . 5 (Β¬ βˆ… ∈ dom /𝑔 β†’ ( /𝑔 β€˜βˆ…) = βˆ…)
2321, 22mp1i 13 . . . 4 (Β¬ π‘ˆ ∈ V β†’ ( /𝑔 β€˜βˆ…) = βˆ…)
24 fvprc 6883 . . . . 5 (Β¬ π‘ˆ ∈ V β†’ ( +𝑣 β€˜π‘ˆ) = βˆ…)
2524fveq2d 6895 . . . 4 (Β¬ π‘ˆ ∈ V β†’ ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ)) = ( /𝑔 β€˜βˆ…))
26 fvprc 6883 . . . 4 (Β¬ π‘ˆ ∈ V β†’ ( βˆ’π‘£ β€˜π‘ˆ) = βˆ…)
2723, 25, 263eqtr4rd 2783 . . 3 (Β¬ π‘ˆ ∈ V β†’ ( βˆ’π‘£ β€˜π‘ˆ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ)))
2813, 27pm2.61i 182 . 2 ( βˆ’π‘£ β€˜π‘ˆ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ))
29 vsfval.3 . 2 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
30 vsfval.2 . . 3 𝐺 = ( +𝑣 β€˜π‘ˆ)
3130fveq2i 6894 . 2 ( /𝑔 β€˜πΊ) = ( /𝑔 β€˜( +𝑣 β€˜π‘ˆ))
3228, 29, 313eqtr4i 2770 1 𝑀 = ( /𝑔 β€˜πΊ)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βˆ…c0 4322  dom cdm 5676  ran crn 5677   ∘ ccom 5680  βŸΆwf 6539  β€“ontoβ†’wfo 6541  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413  1st c1st 7975  GrpOpcgr 29997  invcgn 29999   /𝑔 cgs 30000   +𝑣 cpv 30093   βˆ’π‘£ cnsb 30097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-grpo 30001  df-gdiv 30004  df-va 30103  df-vs 30107
This theorem is referenced by:  nvm  30149  nvmfval  30152  nvnnncan1  30155  nvaddsub  30163
  Copyright terms: Public domain W3C validator