| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsfval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vsfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| vsfval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| vsfval | ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vs 30571 | . . . . 5 ⊢ −𝑣 = ( /𝑔 ∘ +𝑣 ) | |
| 2 | 1 | fveq1i 6818 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = (( /𝑔 ∘ +𝑣 )‘𝑈) |
| 3 | fo1st 7936 | . . . . . . . 8 ⊢ 1st :V–onto→V | |
| 4 | fof 6730 | . . . . . . . 8 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 1st :V⟶V |
| 6 | fco 6670 | . . . . . . 7 ⊢ ((1st :V⟶V ∧ 1st :V⟶V) → (1st ∘ 1st ):V⟶V) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . . . 6 ⊢ (1st ∘ 1st ):V⟶V |
| 8 | df-va 30567 | . . . . . . 7 ⊢ +𝑣 = (1st ∘ 1st ) | |
| 9 | 8 | feq1i 6637 | . . . . . 6 ⊢ ( +𝑣 :V⟶V ↔ (1st ∘ 1st ):V⟶V) |
| 10 | 7, 9 | mpbir 231 | . . . . 5 ⊢ +𝑣 :V⟶V |
| 11 | fvco3 6916 | . . . . 5 ⊢ (( +𝑣 :V⟶V ∧ 𝑈 ∈ V) → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) | |
| 12 | 10, 11 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ V → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 13 | 2, 12 | eqtrid 2778 | . . 3 ⊢ (𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 14 | 0ngrp 30483 | . . . . . 6 ⊢ ¬ ∅ ∈ GrpOp | |
| 15 | vex 3440 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
| 16 | 15 | rnex 7835 | . . . . . . . . 9 ⊢ ran 𝑔 ∈ V |
| 17 | 16, 16 | mpoex 8006 | . . . . . . . 8 ⊢ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) ∈ V |
| 18 | df-gdiv 30468 | . . . . . . . 8 ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | |
| 19 | 17, 18 | dmmpti 6620 | . . . . . . 7 ⊢ dom /𝑔 = GrpOp |
| 20 | 19 | eleq2i 2823 | . . . . . 6 ⊢ (∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp) |
| 21 | 14, 20 | mtbir 323 | . . . . 5 ⊢ ¬ ∅ ∈ dom /𝑔 |
| 22 | ndmfv 6849 | . . . . 5 ⊢ (¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘∅) = ∅) | |
| 23 | 21, 22 | mp1i 13 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘∅) = ∅) |
| 24 | fvprc 6809 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
| 25 | 24 | fveq2d 6821 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘( +𝑣 ‘𝑈)) = ( /𝑔 ‘∅)) |
| 26 | fvprc 6809 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ∅) | |
| 27 | 23, 25, 26 | 3eqtr4rd 2777 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 28 | 13, 27 | pm2.61i 182 | . 2 ⊢ ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
| 29 | vsfval.3 | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 30 | vsfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 31 | 30 | fveq2i 6820 | . 2 ⊢ ( /𝑔 ‘𝐺) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
| 32 | 28, 29, 31 | 3eqtr4i 2764 | 1 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 dom cdm 5611 ran crn 5612 ∘ ccom 5615 ⟶wf 6472 –onto→wfo 6474 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 1st c1st 7914 GrpOpcgr 30461 invcgn 30463 /𝑔 cgs 30464 +𝑣 cpv 30557 −𝑣 cnsb 30561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-grpo 30465 df-gdiv 30468 df-va 30567 df-vs 30571 |
| This theorem is referenced by: nvm 30613 nvmfval 30616 nvnnncan1 30619 nvaddsub 30627 |
| Copyright terms: Public domain | W3C validator |