| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsfval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vsfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| vsfval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| vsfval | ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vs 30580 | . . . . 5 ⊢ −𝑣 = ( /𝑔 ∘ +𝑣 ) | |
| 2 | 1 | fveq1i 6877 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = (( /𝑔 ∘ +𝑣 )‘𝑈) |
| 3 | fo1st 8008 | . . . . . . . 8 ⊢ 1st :V–onto→V | |
| 4 | fof 6790 | . . . . . . . 8 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 1st :V⟶V |
| 6 | fco 6730 | . . . . . . 7 ⊢ ((1st :V⟶V ∧ 1st :V⟶V) → (1st ∘ 1st ):V⟶V) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . . . 6 ⊢ (1st ∘ 1st ):V⟶V |
| 8 | df-va 30576 | . . . . . . 7 ⊢ +𝑣 = (1st ∘ 1st ) | |
| 9 | 8 | feq1i 6697 | . . . . . 6 ⊢ ( +𝑣 :V⟶V ↔ (1st ∘ 1st ):V⟶V) |
| 10 | 7, 9 | mpbir 231 | . . . . 5 ⊢ +𝑣 :V⟶V |
| 11 | fvco3 6978 | . . . . 5 ⊢ (( +𝑣 :V⟶V ∧ 𝑈 ∈ V) → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) | |
| 12 | 10, 11 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ V → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 13 | 2, 12 | eqtrid 2782 | . . 3 ⊢ (𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 14 | 0ngrp 30492 | . . . . . 6 ⊢ ¬ ∅ ∈ GrpOp | |
| 15 | vex 3463 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
| 16 | 15 | rnex 7906 | . . . . . . . . 9 ⊢ ran 𝑔 ∈ V |
| 17 | 16, 16 | mpoex 8078 | . . . . . . . 8 ⊢ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) ∈ V |
| 18 | df-gdiv 30477 | . . . . . . . 8 ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | |
| 19 | 17, 18 | dmmpti 6682 | . . . . . . 7 ⊢ dom /𝑔 = GrpOp |
| 20 | 19 | eleq2i 2826 | . . . . . 6 ⊢ (∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp) |
| 21 | 14, 20 | mtbir 323 | . . . . 5 ⊢ ¬ ∅ ∈ dom /𝑔 |
| 22 | ndmfv 6911 | . . . . 5 ⊢ (¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘∅) = ∅) | |
| 23 | 21, 22 | mp1i 13 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘∅) = ∅) |
| 24 | fvprc 6868 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
| 25 | 24 | fveq2d 6880 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘( +𝑣 ‘𝑈)) = ( /𝑔 ‘∅)) |
| 26 | fvprc 6868 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ∅) | |
| 27 | 23, 25, 26 | 3eqtr4rd 2781 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 28 | 13, 27 | pm2.61i 182 | . 2 ⊢ ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
| 29 | vsfval.3 | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 30 | vsfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 31 | 30 | fveq2i 6879 | . 2 ⊢ ( /𝑔 ‘𝐺) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
| 32 | 28, 29, 31 | 3eqtr4i 2768 | 1 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 dom cdm 5654 ran crn 5655 ∘ ccom 5658 ⟶wf 6527 –onto→wfo 6529 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7986 GrpOpcgr 30470 invcgn 30472 /𝑔 cgs 30473 +𝑣 cpv 30566 −𝑣 cnsb 30570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-grpo 30474 df-gdiv 30477 df-va 30576 df-vs 30580 |
| This theorem is referenced by: nvm 30622 nvmfval 30625 nvnnncan1 30628 nvaddsub 30636 |
| Copyright terms: Public domain | W3C validator |