| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsfval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vsfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| vsfval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| vsfval | ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vs 30528 | . . . . 5 ⊢ −𝑣 = ( /𝑔 ∘ +𝑣 ) | |
| 2 | 1 | fveq1i 6859 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = (( /𝑔 ∘ +𝑣 )‘𝑈) |
| 3 | fo1st 7988 | . . . . . . . 8 ⊢ 1st :V–onto→V | |
| 4 | fof 6772 | . . . . . . . 8 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 1st :V⟶V |
| 6 | fco 6712 | . . . . . . 7 ⊢ ((1st :V⟶V ∧ 1st :V⟶V) → (1st ∘ 1st ):V⟶V) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . . . 6 ⊢ (1st ∘ 1st ):V⟶V |
| 8 | df-va 30524 | . . . . . . 7 ⊢ +𝑣 = (1st ∘ 1st ) | |
| 9 | 8 | feq1i 6679 | . . . . . 6 ⊢ ( +𝑣 :V⟶V ↔ (1st ∘ 1st ):V⟶V) |
| 10 | 7, 9 | mpbir 231 | . . . . 5 ⊢ +𝑣 :V⟶V |
| 11 | fvco3 6960 | . . . . 5 ⊢ (( +𝑣 :V⟶V ∧ 𝑈 ∈ V) → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) | |
| 12 | 10, 11 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ V → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 13 | 2, 12 | eqtrid 2776 | . . 3 ⊢ (𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 14 | 0ngrp 30440 | . . . . . 6 ⊢ ¬ ∅ ∈ GrpOp | |
| 15 | vex 3451 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
| 16 | 15 | rnex 7886 | . . . . . . . . 9 ⊢ ran 𝑔 ∈ V |
| 17 | 16, 16 | mpoex 8058 | . . . . . . . 8 ⊢ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) ∈ V |
| 18 | df-gdiv 30425 | . . . . . . . 8 ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | |
| 19 | 17, 18 | dmmpti 6662 | . . . . . . 7 ⊢ dom /𝑔 = GrpOp |
| 20 | 19 | eleq2i 2820 | . . . . . 6 ⊢ (∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp) |
| 21 | 14, 20 | mtbir 323 | . . . . 5 ⊢ ¬ ∅ ∈ dom /𝑔 |
| 22 | ndmfv 6893 | . . . . 5 ⊢ (¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘∅) = ∅) | |
| 23 | 21, 22 | mp1i 13 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘∅) = ∅) |
| 24 | fvprc 6850 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
| 25 | 24 | fveq2d 6862 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘( +𝑣 ‘𝑈)) = ( /𝑔 ‘∅)) |
| 26 | fvprc 6850 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ∅) | |
| 27 | 23, 25, 26 | 3eqtr4rd 2775 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 28 | 13, 27 | pm2.61i 182 | . 2 ⊢ ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
| 29 | vsfval.3 | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 30 | vsfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 31 | 30 | fveq2i 6861 | . 2 ⊢ ( /𝑔 ‘𝐺) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
| 32 | 28, 29, 31 | 3eqtr4i 2762 | 1 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 dom cdm 5638 ran crn 5639 ∘ ccom 5642 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 GrpOpcgr 30418 invcgn 30420 /𝑔 cgs 30421 +𝑣 cpv 30514 −𝑣 cnsb 30518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-grpo 30422 df-gdiv 30425 df-va 30524 df-vs 30528 |
| This theorem is referenced by: nvm 30570 nvmfval 30573 nvnnncan1 30576 nvaddsub 30584 |
| Copyright terms: Public domain | W3C validator |