| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsfval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vsfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| vsfval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| vsfval | ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vs 30600 | . . . . 5 ⊢ −𝑣 = ( /𝑔 ∘ +𝑣 ) | |
| 2 | 1 | fveq1i 6832 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = (( /𝑔 ∘ +𝑣 )‘𝑈) |
| 3 | fo1st 7950 | . . . . . . . 8 ⊢ 1st :V–onto→V | |
| 4 | fof 6743 | . . . . . . . 8 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 1st :V⟶V |
| 6 | fco 6683 | . . . . . . 7 ⊢ ((1st :V⟶V ∧ 1st :V⟶V) → (1st ∘ 1st ):V⟶V) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . . . 6 ⊢ (1st ∘ 1st ):V⟶V |
| 8 | df-va 30596 | . . . . . . 7 ⊢ +𝑣 = (1st ∘ 1st ) | |
| 9 | 8 | feq1i 6650 | . . . . . 6 ⊢ ( +𝑣 :V⟶V ↔ (1st ∘ 1st ):V⟶V) |
| 10 | 7, 9 | mpbir 231 | . . . . 5 ⊢ +𝑣 :V⟶V |
| 11 | fvco3 6930 | . . . . 5 ⊢ (( +𝑣 :V⟶V ∧ 𝑈 ∈ V) → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) | |
| 12 | 10, 11 | mpan 690 | . . . 4 ⊢ (𝑈 ∈ V → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 13 | 2, 12 | eqtrid 2780 | . . 3 ⊢ (𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 14 | 0ngrp 30512 | . . . . . 6 ⊢ ¬ ∅ ∈ GrpOp | |
| 15 | vex 3441 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
| 16 | 15 | rnex 7849 | . . . . . . . . 9 ⊢ ran 𝑔 ∈ V |
| 17 | 16, 16 | mpoex 8020 | . . . . . . . 8 ⊢ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) ∈ V |
| 18 | df-gdiv 30497 | . . . . . . . 8 ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | |
| 19 | 17, 18 | dmmpti 6633 | . . . . . . 7 ⊢ dom /𝑔 = GrpOp |
| 20 | 19 | eleq2i 2825 | . . . . . 6 ⊢ (∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp) |
| 21 | 14, 20 | mtbir 323 | . . . . 5 ⊢ ¬ ∅ ∈ dom /𝑔 |
| 22 | ndmfv 6863 | . . . . 5 ⊢ (¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘∅) = ∅) | |
| 23 | 21, 22 | mp1i 13 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘∅) = ∅) |
| 24 | fvprc 6823 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
| 25 | 24 | fveq2d 6835 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘( +𝑣 ‘𝑈)) = ( /𝑔 ‘∅)) |
| 26 | fvprc 6823 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ∅) | |
| 27 | 23, 25, 26 | 3eqtr4rd 2779 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
| 28 | 13, 27 | pm2.61i 182 | . 2 ⊢ ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
| 29 | vsfval.3 | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 30 | vsfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 31 | 30 | fveq2i 6834 | . 2 ⊢ ( /𝑔 ‘𝐺) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
| 32 | 28, 29, 31 | 3eqtr4i 2766 | 1 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 dom cdm 5621 ran crn 5622 ∘ ccom 5625 ⟶wf 6485 –onto→wfo 6487 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 1st c1st 7928 GrpOpcgr 30490 invcgn 30492 /𝑔 cgs 30493 +𝑣 cpv 30586 −𝑣 cnsb 30590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-grpo 30494 df-gdiv 30497 df-va 30596 df-vs 30600 |
| This theorem is referenced by: nvm 30642 nvmfval 30645 nvnnncan1 30648 nvaddsub 30656 |
| Copyright terms: Public domain | W3C validator |