![]() |
Metamath
Proof Explorer Theorem List (p. 299 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | usgr2pth0 29801* | In a simply graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) | ||
Theorem | pthdlem1 29802* | Lemma 1 for pthd 29805. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 9-Feb-2021.) |
⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ 𝑅 = ((♯‘𝑃) − 1) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) ⇒ ⊢ (𝜑 → Fun ◡(𝑃 ↾ (1..^𝑅))) | ||
Theorem | pthdlem2lem 29803* | Lemma for pthdlem2 29804. (Contributed by AV, 10-Feb-2021.) |
⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ 𝑅 = ((♯‘𝑃) − 1) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) ⇒ ⊢ ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃‘𝐼) ∉ (𝑃 “ (1..^𝑅))) | ||
Theorem | pthdlem2 29804* | Lemma 2 for pthd 29805. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 10-Feb-2021.) |
⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ 𝑅 = ((♯‘𝑃) − 1) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) ⇒ ⊢ (𝜑 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅) | ||
Theorem | pthd 29805* | Two words representing a trail which also represent a path in a graph. (Contributed by AV, 10-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ 𝑅 = ((♯‘𝑃) − 1) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) & ⊢ (♯‘𝐹) = 𝑅 & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) ⇒ ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | ||
Syntax | cclwlks 29806 | Extend class notation with closed walks (of a graph). |
class ClWalks | ||
Definition | df-clwlks 29807* |
Define the set of all closed walks (in an undirected graph).
According to definition 4 in [Huneke] p. 2: "A walk of length n on (a graph) G is an ordered sequence v0 , v1 , ... v(n) of vertices such that v(i) and v(i+1) are neighbors (i.e are connected by an edge). We say the walk is closed if v(n) = v0". According to the definition of a walk as two mappings f from { 0 , ... , ( n - 1 ) } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices, a closed walk is represented by the following sequence: p(0) e(f(0)) p(1) e(f(1)) ... p(n-1) e(f(n-1)) p(n)=p(0). Notice that by this definition, a single vertex can be considered as a closed walk of length 0, see also 0clwlk 30162. (Contributed by Alexander van der Vekens, 12-Mar-2018.) (Revised by AV, 16-Feb-2021.) |
⊢ ClWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) | ||
Theorem | clwlks 29808* | The set of closed walks (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 16-Feb-2021.) (Revised by AV, 29-Oct-2021.) |
⊢ (ClWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | ||
Theorem | isclwlk 29809 | A pair of functions represents a closed walk iff it represents a walk in which the first vertex is equal to the last vertex. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | ||
Theorem | clwlkiswlk 29810 | A closed walk is a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐹(ClWalks‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
Theorem | clwlkwlk 29811 | Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) | ||
Theorem | clwlkswks 29812 | Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 16-Feb-2021.) |
⊢ (ClWalks‘𝐺) ⊆ (Walks‘𝐺) | ||
Theorem | isclwlke 29813* | Properties of a pair of functions to be a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 16-Feb-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑋 → (𝐹(ClWalks‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) | ||
Theorem | isclwlkupgr 29814* | Properties of a pair of functions to be a closed walk (in a pseudograph). (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 11-Apr-2021.) (Revised by AV, 28-Oct-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(ClWalks‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) | ||
Theorem | clwlkcomp 29815* | A closed walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) | ||
Theorem | clwlkcompim 29816* | Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) | ||
Theorem | upgrclwlkcompim 29817* | Implications for the properties of the components of a closed walk in a pseudograph. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 2-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (ClWalks‘𝐺)) → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | ||
Theorem | clwlkcompbp 29818 | Basic properties of the components of a closed walk. (Contributed by AV, 23-May-2022.) |
⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | ||
Theorem | clwlkl1loop 29819 | A closed walk of length 1 is a loop. (Contributed by AV, 22-Apr-2021.) |
⊢ ((Fun (iEdg‘𝐺) ∧ 𝐹(ClWalks‘𝐺)𝑃 ∧ (♯‘𝐹) = 1) → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺))) | ||
Syntax | ccrcts 29820 | Extend class notation with circuits (in a graph). |
class Circuits | ||
Syntax | ccycls 29821 | Extend class notation with cycles (in a graph). |
class Cycles | ||
Definition | df-crcts 29822* |
Define the set of all circuits (in an undirected graph).
According to Wikipedia ("Cycle (graph theory)", https://en.wikipedia.org/wiki/Cycle_(graph_theory), 3-Oct-2017): "A circuit can be a closed walk allowing repetitions of vertices but not edges"; according to Wikipedia ("Glossary of graph theory terms", https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms, 3-Oct-2017): "A circuit may refer to ... a trail (a closed tour without repeated edges), ...". Following Bollobas ("A trail whose endvertices coincide (a closed trail) is called a circuit.", see Definition of [Bollobas] p. 5.), a circuit is a closed trail without repeated edges. So the circuit is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0). (Contributed by Alexander van der Vekens, 3-Oct-2017.) (Revised by AV, 31-Jan-2021.) |
⊢ Circuits = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) | ||
Definition | df-cycls 29823* |
Define the set of all (simple) cycles (in an undirected graph).
According to Wikipedia ("Cycle (graph theory)", https://en.wikipedia.org/wiki/Cycle_(graph_theory), 3-Oct-2017): "A simple cycle may be defined either as a closed walk with no repetitions of vertices and edges allowed, other than the repetition of the starting and ending vertex." According to Bollobas: "If a walk W = x0 x1 ... x(l) is such that l >= 3, x0=x(l), and the vertices x(i), 0 < i < l, are distinct from each other and x0, then W is said to be a cycle." See Definition of [Bollobas] p. 5. However, since a walk consisting of distinct vertices (except the first and the last vertex) is a path, a cycle can be defined as path whose first and last vertices coincide. So a cycle is represented by the following sequence: p(0) e(f(1)) p(1) ... p(n-1) e(f(n)) p(n)=p(0). (Contributed by Alexander van der Vekens, 3-Oct-2017.) (Revised by AV, 31-Jan-2021.) |
⊢ Cycles = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Paths‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) | ||
Theorem | crcts 29824* | The set of circuits (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) |
⊢ (Circuits‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | ||
Theorem | cycls 29825* | The set of cycles (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) |
⊢ (Cycles‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | ||
Theorem | iscrct 29826 | Sufficient and necessary conditions for a pair of functions to be a circuit (in an undirected graph): A pair of function "is" (represents) a circuit iff it is a closed trail. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
⊢ (𝐹(Circuits‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | ||
Theorem | iscycl 29827 | Sufficient and necessary conditions for a pair of functions to be a cycle (in an undirected graph): A pair of function "is" (represents) a cycle iff it is a closed path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | ||
Theorem | crctprop 29828 | The properties of a circuit: A circuit is a closed trail. (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | ||
Theorem | cyclprop 29829 | The properties of a cycle: A cycle is a closed path. (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | ||
Theorem | crctisclwlk 29830 | A circuit is a closed walk. (Contributed by AV, 17-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(ClWalks‘𝐺)𝑃) | ||
Theorem | crctistrl 29831 | A circuit is a trail. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) |
⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | ||
Theorem | crctiswlk 29832 | A circuit is a walk. (Contributed by AV, 6-Apr-2021.) |
⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
Theorem | cyclispth 29833 | A cycle is a path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) |
⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | ||
Theorem | cycliswlk 29834 | A cycle is a walk. (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 31-Jan-2021.) |
⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
Theorem | cycliscrct 29835 | A cycle is a circuit. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Circuits‘𝐺)𝑃) | ||
Theorem | cyclnspth 29836 | A (non-trivial) cycle is not a simple path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃)) | ||
Theorem | cyclispthon 29837 | A cycle is a path starting and ending at its first vertex. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹((𝑃‘0)(PathsOn‘𝐺)(𝑃‘0))𝑃) | ||
Theorem | lfgrn1cycl 29838* | In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 1)) | ||
Theorem | usgr2trlncrct 29839 | In a simple graph, any trail of length 2 is not a circuit. (Contributed by AV, 5-Jun-2021.) |
⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → ¬ 𝐹(Circuits‘𝐺)𝑃)) | ||
Theorem | umgrn1cycl 29840 | In a multigraph graph (with no loops!) there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.) |
⊢ ((𝐺 ∈ UMGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 1) | ||
Theorem | uspgrn2crct 29841 | In a simple pseudograph there are no circuits with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017.) (Revised by AV, 3-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.) |
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹(Circuits‘𝐺)𝑃) → (♯‘𝐹) ≠ 2) | ||
Theorem | usgrn2cycl 29842 | In a simple graph there are no cycles with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017.) (Revised by AV, 4-Feb-2021.) |
⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 2) | ||
Theorem | crctcshwlkn0lem1 29843 | Lemma for crctcshwlkn0 29854. (Contributed by AV, 13-Mar-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → ((𝐴 − 𝐵) + 1) ≤ 𝐴) | ||
Theorem | crctcshwlkn0lem2 29844* | Lemma for crctcshwlkn0 29854. (Contributed by AV, 12-Mar-2021.) |
⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ (0...(𝑁 − 𝑆))) → (𝑄‘𝐽) = (𝑃‘(𝐽 + 𝑆))) | ||
Theorem | crctcshwlkn0lem3 29845* | Lemma for crctcshwlkn0 29854. (Contributed by AV, 12-Mar-2021.) |
⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ (((𝑁 − 𝑆) + 1)...𝑁)) → (𝑄‘𝐽) = (𝑃‘((𝐽 + 𝑆) − 𝑁))) | ||
Theorem | crctcshwlkn0lem4 29846* | Lemma for crctcshwlkn0 29854. (Contributed by AV, 12-Mar-2021.) |
⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ Word 𝐴) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) ⇒ ⊢ (𝜑 → ∀𝑗 ∈ (0..^(𝑁 − 𝑆))if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗)))) | ||
Theorem | crctcshwlkn0lem5 29847* | Lemma for crctcshwlkn0 29854. (Contributed by AV, 12-Mar-2021.) |
⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ Word 𝐴) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) ⇒ ⊢ (𝜑 → ∀𝑗 ∈ (((𝑁 − 𝑆) + 1)..^𝑁)if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗)))) | ||
Theorem | crctcshwlkn0lem6 29848* | Lemma for crctcshwlkn0 29854. (Contributed by AV, 12-Mar-2021.) |
⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ Word 𝐴) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) & ⊢ (𝜑 → (𝑃‘𝑁) = (𝑃‘0)) ⇒ ⊢ ((𝜑 ∧ 𝐽 = (𝑁 − 𝑆)) → if-((𝑄‘𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻‘𝐽)) = {(𝑄‘𝐽)}, {(𝑄‘𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻‘𝐽)))) | ||
Theorem | crctcshwlkn0lem7 29849* | Lemma for crctcshwlkn0 29854. (Contributed by AV, 12-Mar-2021.) |
⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ Word 𝐴) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) & ⊢ (𝜑 → (𝑃‘𝑁) = (𝑃‘0)) ⇒ ⊢ (𝜑 → ∀𝑗 ∈ (0..^𝑁)if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗)))) | ||
Theorem | crctcshlem1 29850 | Lemma for crctcsh 29857. (Contributed by AV, 10-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ0) | ||
Theorem | crctcshlem2 29851 | Lemma for crctcsh 29857. (Contributed by AV, 10-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) ⇒ ⊢ (𝜑 → (♯‘𝐻) = 𝑁) | ||
Theorem | crctcshlem3 29852* | Lemma for crctcsh 29857. (Contributed by AV, 10-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) ⇒ ⊢ (𝜑 → (𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) | ||
Theorem | crctcshlem4 29853* | Lemma for crctcsh 29857. (Contributed by AV, 10-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) ⇒ ⊢ ((𝜑 ∧ 𝑆 = 0) → (𝐻 = 𝐹 ∧ 𝑄 = 𝑃)) | ||
Theorem | crctcshwlkn0 29854* | Cyclically shifting the indices of a circuit 〈𝐹, 𝑃〉 results in a walk 〈𝐻, 𝑄〉. (Contributed by AV, 10-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) ⇒ ⊢ ((𝜑 ∧ 𝑆 ≠ 0) → 𝐻(Walks‘𝐺)𝑄) | ||
Theorem | crctcshwlk 29855* | Cyclically shifting the indices of a circuit 〈𝐹, 𝑃〉 results in a walk 〈𝐻, 𝑄〉. (Contributed by AV, 10-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) ⇒ ⊢ (𝜑 → 𝐻(Walks‘𝐺)𝑄) | ||
Theorem | crctcshtrl 29856* | Cyclically shifting the indices of a circuit 〈𝐹, 𝑃〉 results in a trail 〈𝐻, 𝑄〉. (Contributed by AV, 14-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) ⇒ ⊢ (𝜑 → 𝐻(Trails‘𝐺)𝑄) | ||
Theorem | crctcsh 29857* | Cyclically shifting the indices of a circuit 〈𝐹, 𝑃〉 results in a circuit 〈𝐻, 𝑄〉. (Contributed by AV, 10-Mar-2021.) (Proof shortened by AV, 31-Oct-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) ⇒ ⊢ (𝜑 → 𝐻(Circuits‘𝐺)𝑄) | ||
In general, a walk is an alternating sequence of vertices and edges, as defined in df-wlks 29635: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Often, it is sufficient to refer to a walk by the natural sequence of its vertices, i.e omitting its edges in its representation: p(0) p(1) ... p(n-1) p(n), see the corresponding remark in [Diestel] p. 6. The concept of a Word, see df-word 14563, is the appropriate way to define such a sequence (being finite and starting at index 0) of vertices. Therefore, it is used in Definitions df-wwlks 29863 and df-wwlksn 29864, and the representation of a walk as sequence of its vertices is called "walk as word". Only for simple pseudographs, however, the edges can be uniquely reconstructed from such a representation. In other cases, there could be more than one edge between two adjacent vertices in the walk (in a multigraph), or two adjacent vertices could be connected by two different hyperedges involving additional vertices (in a hypergraph). | ||
Syntax | cwwlks 29858 | Extend class notation with walks (in a graph) as word over the set of vertices. |
class WWalks | ||
Syntax | cwwlksn 29859 | Extend class notation with walks (in a graph) of a fixed length as word over the set of vertices. |
class WWalksN | ||
Syntax | cwwlksnon 29860 | Extend class notation with walks between two vertices (in a graph) of a fixed length as word over the set of vertices. |
class WWalksNOn | ||
Syntax | cwwspthsn 29861 | Extend class notation with simple paths (in a graph) of a fixed length as word over the set of vertices. |
class WSPathsN | ||
Syntax | cwwspthsnon 29862 | Extend class notation with simple paths between two vertices (in a graph) of a fixed length as word over the set of vertices. |
class WSPathsNOn | ||
Definition | df-wwlks 29863* | Define the set of all walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks 29635. 𝑤 = ∅ has to be excluded because a walk always consists of at least one vertex, see wlkn0 29657. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
⊢ WWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔))}) | ||
Definition | df-wwlksn 29864* | Define the set of all walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks 29635. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
⊢ WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) | ||
Definition | df-wwlksnon 29865* | Define the collection of walks of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.) |
⊢ WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) | ||
Definition | df-wspthsn 29866* | Define the collection of simple paths of a fixed length as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.) |
⊢ WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤}) | ||
Definition | df-wspthsnon 29867* | Define the collection of simple paths of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.) |
⊢ WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤})) | ||
Theorem | wwlks 29868* | The set of walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (WWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)} | ||
Theorem | iswwlks 29869* | A word over the set of vertices representing a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) | ||
Theorem | wwlksn 29870* | The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) | ||
Theorem | iswwlksn 29871 | A word over the set of vertices representing a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))) | ||
Theorem | wwlksnprcl 29872 | Derivation of the length of a word 𝑊 whose concatenation with a singleton word represents a walk of a fixed length 𝑁 (a partial reverse closure theorem). (Contributed by AV, 4-Mar-2022.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑊 ++ 〈“𝑋”〉) ∈ (𝑁 WWalksN 𝐺) → (♯‘𝑊) = 𝑁)) | ||
Theorem | iswwlksnx 29873* | Properties of a word to represent a walk of a fixed length, definition of WWalks expanded. (Contributed by AV, 28-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1)))) | ||
Theorem | wwlkbp 29874 | Basic properties of a walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 9-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑊 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉)) | ||
Theorem | wwlknbp 29875 | Basic properties of a walk of a fixed length (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 16-Jul-2018.) (Revised by AV, 9-Apr-2021.) (Proof shortened by AV, 20-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉)) | ||
Theorem | wwlknp 29876* | Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 9-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) | ||
Theorem | wwlknbp1 29877 | Other basic properties of a walk of a fixed length as word. (Contributed by AV, 8-Mar-2022.) |
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) | ||
Theorem | wwlknvtx 29878* | The symbols of a word 𝑊 representing a walk of a fixed length 𝑁 are vertices. (Contributed by AV, 16-Mar-2022.) |
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∀𝑖 ∈ (0...𝑁)(𝑊‘𝑖) ∈ (Vtx‘𝐺)) | ||
Theorem | wwlknllvtx 29879 | If a word 𝑊 represents a walk of a fixed length 𝑁, then the first and the last symbol of the word is a vertex. (Contributed by AV, 14-Mar-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘𝑁) ∈ 𝑉)) | ||
Theorem | wwlknlsw 29880 | If a word represents a walk of a fixed length, then the last symbol of the word is the endvertex of the walk. (Contributed by AV, 8-Mar-2022.) |
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊‘𝑁) = (lastS‘𝑊)) | ||
Theorem | wspthsn 29881* | The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.) |
⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} | ||
Theorem | iswspthn 29882* | An element of the set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.) |
⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) | ||
Theorem | wspthnp 29883* | Properties of a set being a simple path of a fixed length as word. (Contributed by AV, 18-May-2021.) |
⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) | ||
Theorem | wwlksnon 29884* | The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑁 WWalksNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑁) = 𝑏)})) | ||
Theorem | wspthsnon 29885* | The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsNOn 𝐺) = (𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})) | ||
Theorem | iswwlksnon 29886* | The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘𝑁) = 𝐵)} | ||
Theorem | wwlksnon0 29887 | Sufficient conditions for a set of walks of a fixed length between two vertices to be empty. (Contributed by AV, 15-May-2021.) (Proof shortened by AV, 21-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (¬ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = ∅) | ||
Theorem | wwlksonvtx 29888 | If a word 𝑊 represents a walk of length 2 on two classes 𝐴 and 𝐶, these classes are vertices. (Contributed by AV, 14-Mar-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | ||
Theorem | iswspthsnon 29889* | The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} | ||
Theorem | wwlknon 29890 | An element of the set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.) |
⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘𝑁) = 𝐵)) | ||
Theorem | wspthnon 29891* | An element of the set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 15-Mar-2022.) |
⊢ (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)) | ||
Theorem | wspthnonp 29892* | Properties of a set being a simple path of a fixed length between two vertices as word. (Contributed by AV, 14-May-2021.) (Proof shortened by AV, 15-Mar-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))) | ||
Theorem | wspthneq1eq2 29893 | Two simple paths with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.) |
⊢ ((𝑃 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ 𝑃 ∈ (𝐶(𝑁 WSPathsNOn 𝐺)𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | wwlksn0s 29894* | The set of all walks as words of length 0 is the set of all words of length 1 over the vertices. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 12-Apr-2021.) |
⊢ (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1} | ||
Theorem | wwlkssswrd 29895 | Walks (represented by words) are words. (Contributed by Alexander van der Vekens, 17-Jul-2018.) (Revised by AV, 9-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (WWalks‘𝐺) ⊆ Word 𝑉 | ||
Theorem | wwlksn0 29896* | A walk of length 0 is represented by a singleton word. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 9-Apr-2021.) (Proof shortened by AV, 21-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑊 ∈ (0 WWalksN 𝐺) → ∃𝑣 ∈ 𝑉 𝑊 = 〈“𝑣”〉) | ||
Theorem | 0enwwlksnge1 29897 | In graphs without edges, there are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.) |
⊢ (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅) | ||
Theorem | wwlkswwlksn 29898 | A walk of a fixed length as word is a walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 17-Jul-2018.) (Revised by AV, 12-Apr-2021.) |
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ (WWalks‘𝐺)) | ||
Theorem | wwlkssswwlksn 29899 | The walks of a fixed length as words are walks (in an undirected graph) as words. (Contributed by Alexander van der Vekens, 17-Jul-2018.) (Revised by AV, 12-Apr-2021.) |
⊢ (𝑁 WWalksN 𝐺) ⊆ (WWalks‘𝐺) | ||
Theorem | wlkiswwlks1 29900 | The sequence of vertices in a walk is a walk as word in a pseudograph. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 9-Apr-2021.) |
⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ (WWalks‘𝐺))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |