Detailed syntax breakdown of Definition df-vtxdg
| Step | Hyp | Ref
| Expression |
| 1 | | cvtxdg 29483 |
. 2
class
VtxDeg |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vv |
. . . 4
setvar 𝑣 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑔 |
| 6 | | cvtx 29013 |
. . . . 5
class
Vtx |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(Vtx‘𝑔) |
| 8 | | ve |
. . . . 5
setvar 𝑒 |
| 9 | | ciedg 29014 |
. . . . . 6
class
iEdg |
| 10 | 5, 9 | cfv 6561 |
. . . . 5
class
(iEdg‘𝑔) |
| 11 | | vu |
. . . . . 6
setvar 𝑢 |
| 12 | 4 | cv 1539 |
. . . . . 6
class 𝑣 |
| 13 | 11 | cv 1539 |
. . . . . . . . . 10
class 𝑢 |
| 14 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 15 | 14 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 16 | 8 | cv 1539 |
. . . . . . . . . . 11
class 𝑒 |
| 17 | 15, 16 | cfv 6561 |
. . . . . . . . . 10
class (𝑒‘𝑥) |
| 18 | 13, 17 | wcel 2108 |
. . . . . . . . 9
wff 𝑢 ∈ (𝑒‘𝑥) |
| 19 | 16 | cdm 5685 |
. . . . . . . . 9
class dom 𝑒 |
| 20 | 18, 14, 19 | crab 3436 |
. . . . . . . 8
class {𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)} |
| 21 | | chash 14369 |
. . . . . . . 8
class
♯ |
| 22 | 20, 21 | cfv 6561 |
. . . . . . 7
class
(♯‘{𝑥
∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) |
| 23 | 13 | csn 4626 |
. . . . . . . . . 10
class {𝑢} |
| 24 | 17, 23 | wceq 1540 |
. . . . . . . . 9
wff (𝑒‘𝑥) = {𝑢} |
| 25 | 24, 14, 19 | crab 3436 |
. . . . . . . 8
class {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}} |
| 26 | 25, 21 | cfv 6561 |
. . . . . . 7
class
(♯‘{𝑥
∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}}) |
| 27 | | cxad 13152 |
. . . . . . 7
class
+𝑒 |
| 28 | 22, 26, 27 | co 7431 |
. . . . . 6
class
((♯‘{𝑥
∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}})) |
| 29 | 11, 12, 28 | cmpt 5225 |
. . . . 5
class (𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}}))) |
| 30 | 8, 10, 29 | csb 3899 |
. . . 4
class
⦋(iEdg‘𝑔) / 𝑒⦌(𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}}))) |
| 31 | 4, 7, 30 | csb 3899 |
. . 3
class
⦋(Vtx‘𝑔) / 𝑣⦌⦋(iEdg‘𝑔) / 𝑒⦌(𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}}))) |
| 32 | 2, 3, 31 | cmpt 5225 |
. 2
class (𝑔 ∈ V ↦
⦋(Vtx‘𝑔) / 𝑣⦌⦋(iEdg‘𝑔) / 𝑒⦌(𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}})))) |
| 33 | 1, 32 | wceq 1540 |
1
wff VtxDeg =
(𝑔 ∈ V ↦
⦋(Vtx‘𝑔) / 𝑣⦌⦋(iEdg‘𝑔) / 𝑒⦌(𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}})))) |