Step | Hyp | Ref
| Expression |
1 | | df-vtxdg 27736 |
. 2
⊢ VtxDeg =
(𝑔 ∈ V ↦
⦋(Vtx‘𝑔) / 𝑣⦌⦋(iEdg‘𝑔) / 𝑒⦌(𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}})))) |
2 | | fvex 6769 |
. . . 4
⊢
(Vtx‘𝑔) ∈
V |
3 | | fvex 6769 |
. . . 4
⊢
(iEdg‘𝑔)
∈ V |
4 | | simpl 482 |
. . . . 5
⊢ ((𝑣 = (Vtx‘𝑔) ∧ 𝑒 = (iEdg‘𝑔)) → 𝑣 = (Vtx‘𝑔)) |
5 | | dmeq 5801 |
. . . . . . . . 9
⊢ (𝑒 = (iEdg‘𝑔) → dom 𝑒 = dom (iEdg‘𝑔)) |
6 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑒 = (iEdg‘𝑔) → (𝑒‘𝑥) = ((iEdg‘𝑔)‘𝑥)) |
7 | 6 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑒 = (iEdg‘𝑔) → (𝑢 ∈ (𝑒‘𝑥) ↔ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥))) |
8 | 5, 7 | rabeqbidv 3410 |
. . . . . . . 8
⊢ (𝑒 = (iEdg‘𝑔) → {𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)} = {𝑥 ∈ dom (iEdg‘𝑔) ∣ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥)}) |
9 | 8 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑒 = (iEdg‘𝑔) → (♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) = (♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥)})) |
10 | 6 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑒 = (iEdg‘𝑔) → ((𝑒‘𝑥) = {𝑢} ↔ ((iEdg‘𝑔)‘𝑥) = {𝑢})) |
11 | 5, 10 | rabeqbidv 3410 |
. . . . . . . 8
⊢ (𝑒 = (iEdg‘𝑔) → {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}} = {𝑥 ∈ dom (iEdg‘𝑔) ∣ ((iEdg‘𝑔)‘𝑥) = {𝑢}}) |
12 | 11 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑒 = (iEdg‘𝑔) → (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}}) = (♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ ((iEdg‘𝑔)‘𝑥) = {𝑢}})) |
13 | 9, 12 | oveq12d 7273 |
. . . . . 6
⊢ (𝑒 = (iEdg‘𝑔) → ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}})) = ((♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom (iEdg‘𝑔) ∣
((iEdg‘𝑔)‘𝑥) = {𝑢}}))) |
14 | 13 | adantl 481 |
. . . . 5
⊢ ((𝑣 = (Vtx‘𝑔) ∧ 𝑒 = (iEdg‘𝑔)) → ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}})) = ((♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom (iEdg‘𝑔) ∣
((iEdg‘𝑔)‘𝑥) = {𝑢}}))) |
15 | 4, 14 | mpteq12dv 5161 |
. . . 4
⊢ ((𝑣 = (Vtx‘𝑔) ∧ 𝑒 = (iEdg‘𝑔)) → (𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}}))) = (𝑢 ∈ (Vtx‘𝑔) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom (iEdg‘𝑔) ∣
((iEdg‘𝑔)‘𝑥) = {𝑢}})))) |
16 | 2, 3, 15 | csbie2 3870 |
. . 3
⊢
⦋(Vtx‘𝑔) / 𝑣⦌⦋(iEdg‘𝑔) / 𝑒⦌(𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}}))) = (𝑢 ∈ (Vtx‘𝑔) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ ((iEdg‘𝑔)‘𝑥) = {𝑢}}))) |
17 | | fveq2 6756 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
18 | | vtxdgfval.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
19 | 17, 18 | eqtr4di 2797 |
. . . . 5
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
20 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) |
21 | 20 | dmeqd 5803 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom (iEdg‘𝐺)) |
22 | | vtxdgfval.a |
. . . . . . . . . 10
⊢ 𝐴 = dom 𝐼 |
23 | | vtxdgfval.i |
. . . . . . . . . . 11
⊢ 𝐼 = (iEdg‘𝐺) |
24 | 23 | dmeqi 5802 |
. . . . . . . . . 10
⊢ dom 𝐼 = dom (iEdg‘𝐺) |
25 | 22, 24 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝐴 = dom (iEdg‘𝐺) |
26 | 21, 25 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → dom (iEdg‘𝑔) = 𝐴) |
27 | 20, 23 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼) |
28 | 27 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((iEdg‘𝑔)‘𝑥) = (𝐼‘𝑥)) |
29 | 28 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑢 ∈ ((iEdg‘𝑔)‘𝑥) ↔ 𝑢 ∈ (𝐼‘𝑥))) |
30 | 26, 29 | rabeqbidv 3410 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → {𝑥 ∈ dom (iEdg‘𝑔) ∣ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) |
31 | 30 | fveq2d 6760 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥)}) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)})) |
32 | 28 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (((iEdg‘𝑔)‘𝑥) = {𝑢} ↔ (𝐼‘𝑥) = {𝑢})) |
33 | 26, 32 | rabeqbidv 3410 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → {𝑥 ∈ dom (iEdg‘𝑔) ∣ ((iEdg‘𝑔)‘𝑥) = {𝑢}} = {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}) |
34 | 33 | fveq2d 6760 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ ((iEdg‘𝑔)‘𝑥) = {𝑢}}) = (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})) |
35 | 31, 34 | oveq12d 7273 |
. . . . 5
⊢ (𝑔 = 𝐺 → ((♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom (iEdg‘𝑔) ∣
((iEdg‘𝑔)‘𝑥) = {𝑢}})) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) |
36 | 19, 35 | mpteq12dv 5161 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑢 ∈ (Vtx‘𝑔) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom (iEdg‘𝑔) ∣
((iEdg‘𝑔)‘𝑥) = {𝑢}}))) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |
37 | 36 | adantl 481 |
. . 3
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺) → (𝑢 ∈ (Vtx‘𝑔) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝑔) ∣ 𝑢 ∈ ((iEdg‘𝑔)‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom (iEdg‘𝑔) ∣
((iEdg‘𝑔)‘𝑥) = {𝑢}}))) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |
38 | 16, 37 | syl5eq 2791 |
. 2
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺) → ⦋(Vtx‘𝑔) / 𝑣⦌⦋(iEdg‘𝑔) / 𝑒⦌(𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}}))) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |
39 | | elex 3440 |
. 2
⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) |
40 | 18 | fvexi 6770 |
. . 3
⊢ 𝑉 ∈ V |
41 | | mptexg 7079 |
. . 3
⊢ (𝑉 ∈ V → (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) ∈ V) |
42 | 40, 41 | mp1i 13 |
. 2
⊢ (𝐺 ∈ 𝑊 → (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) ∈ V) |
43 | 1, 38, 39, 42 | fvmptd2 6865 |
1
⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |