Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-watsN | Structured version Visualization version GIF version |
Description: Define W-atoms corresponding to an arbitrary "fiducial (i.e. reference) atom" 𝑑. These are all atoms not in the polarity of {𝑑}), which is the hyperplane determined by 𝑑. Definition of set W in [Crawley] p. 111. (Contributed by NM, 26-Jan-2012.) |
Ref | Expression |
---|---|
df-watsN | ⊢ WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cwpointsN 38000 | . 2 class WAtoms | |
2 | vk | . . 3 setvar 𝑘 | |
3 | cvv 3432 | . . 3 class V | |
4 | vd | . . . 4 setvar 𝑑 | |
5 | 2 | cv 1538 | . . . . 5 class 𝑘 |
6 | catm 37277 | . . . . 5 class Atoms | |
7 | 5, 6 | cfv 6433 | . . . 4 class (Atoms‘𝑘) |
8 | 4 | cv 1538 | . . . . . . 7 class 𝑑 |
9 | 8 | csn 4561 | . . . . . 6 class {𝑑} |
10 | cpolN 37916 | . . . . . . 7 class ⊥𝑃 | |
11 | 5, 10 | cfv 6433 | . . . . . 6 class (⊥𝑃‘𝑘) |
12 | 9, 11 | cfv 6433 | . . . . 5 class ((⊥𝑃‘𝑘)‘{𝑑}) |
13 | 7, 12 | cdif 3884 | . . . 4 class ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑})) |
14 | 4, 7, 13 | cmpt 5157 | . . 3 class (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑}))) |
15 | 2, 3, 14 | cmpt 5157 | . 2 class (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑})))) |
16 | 1, 15 | wceq 1539 | 1 wff WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑})))) |
Colors of variables: wff setvar class |
This definition is referenced by: watfvalN 38006 |
Copyright terms: Public domain | W3C validator |