Detailed syntax breakdown of Definition df-pautN
Step | Hyp | Ref
| Expression |
1 | | cpautN 37928 |
. 2
class
PAut |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3422 |
. . 3
class
V |
4 | 2 | cv 1538 |
. . . . . . 7
class 𝑘 |
5 | | cpsubsp 37437 |
. . . . . . 7
class
PSubSp |
6 | 4, 5 | cfv 6418 |
. . . . . 6
class
(PSubSp‘𝑘) |
7 | | vf |
. . . . . . 7
setvar 𝑓 |
8 | 7 | cv 1538 |
. . . . . 6
class 𝑓 |
9 | 6, 6, 8 | wf1o 6417 |
. . . . 5
wff 𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) |
10 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
11 | 10 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
12 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
13 | 12 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
14 | 11, 13 | wss 3883 |
. . . . . . . 8
wff 𝑥 ⊆ 𝑦 |
15 | 11, 8 | cfv 6418 |
. . . . . . . . 9
class (𝑓‘𝑥) |
16 | 13, 8 | cfv 6418 |
. . . . . . . . 9
class (𝑓‘𝑦) |
17 | 15, 16 | wss 3883 |
. . . . . . . 8
wff (𝑓‘𝑥) ⊆ (𝑓‘𝑦) |
18 | 14, 17 | wb 205 |
. . . . . . 7
wff (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) |
19 | 18, 12, 6 | wral 3063 |
. . . . . 6
wff
∀𝑦 ∈
(PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) |
20 | 19, 10, 6 | wral 3063 |
. . . . 5
wff
∀𝑥 ∈
(PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) |
21 | 9, 20 | wa 395 |
. . . 4
wff (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))) |
22 | 21, 7 | cab 2715 |
. . 3
class {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} |
23 | 2, 3, 22 | cmpt 5153 |
. 2
class (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
24 | 1, 23 | wceq 1539 |
1
wff PAut =
(𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |