Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  watfvalN Structured version   Visualization version   GIF version

Theorem watfvalN 39497
Description: The W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
watomfval.a 𝐴 = (Atoms‘𝐾)
watomfval.p 𝑃 = (⊥𝑃𝐾)
watomfval.w 𝑊 = (WAtoms‘𝐾)
Assertion
Ref Expression
watfvalN (𝐾𝐵𝑊 = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
Distinct variable groups:   𝐴,𝑑   𝐾,𝑑
Allowed substitution hints:   𝐵(𝑑)   𝑃(𝑑)   𝑊(𝑑)

Proof of Theorem watfvalN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾𝐵𝐾 ∈ V)
2 watomfval.w . . 3 𝑊 = (WAtoms‘𝐾)
3 fveq2 6902 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 watomfval.a . . . . . 6 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2786 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
6 fveq2 6902 . . . . . . 7 (𝑘 = 𝐾 → (⊥𝑃𝑘) = (⊥𝑃𝐾))
76fveq1d 6904 . . . . . 6 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘{𝑑}) = ((⊥𝑃𝐾)‘{𝑑}))
85, 7difeq12d 4123 . . . . 5 (𝑘 = 𝐾 → ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑})) = (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑})))
95, 8mpteq12dv 5243 . . . 4 (𝑘 = 𝐾 → (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑}))) = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
10 df-watsN 39495 . . . 4 WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑}))))
119, 10, 4mptfvmpt 7246 . . 3 (𝐾 ∈ V → (WAtoms‘𝐾) = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
122, 11eqtrid 2780 . 2 (𝐾 ∈ V → 𝑊 = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
131, 12syl 17 1 (𝐾𝐵𝑊 = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3473  cdif 3946  {csn 4632  cmpt 5235  cfv 6553  Atomscatm 38767  𝑃cpolN 39407  WAtomscwpointsN 39491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-watsN 39495
This theorem is referenced by:  watvalN  39498
  Copyright terms: Public domain W3C validator