Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  watfvalN Structured version   Visualization version   GIF version

Theorem watfvalN 40010
Description: The W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
watomfval.a 𝐴 = (Atoms‘𝐾)
watomfval.p 𝑃 = (⊥𝑃𝐾)
watomfval.w 𝑊 = (WAtoms‘𝐾)
Assertion
Ref Expression
watfvalN (𝐾𝐵𝑊 = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
Distinct variable groups:   𝐴,𝑑   𝐾,𝑑
Allowed substitution hints:   𝐵(𝑑)   𝑃(𝑑)   𝑊(𝑑)

Proof of Theorem watfvalN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3455 . 2 (𝐾𝐵𝐾 ∈ V)
2 watomfval.w . . 3 𝑊 = (WAtoms‘𝐾)
3 fveq2 6817 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 watomfval.a . . . . . 6 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2783 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
6 fveq2 6817 . . . . . . 7 (𝑘 = 𝐾 → (⊥𝑃𝑘) = (⊥𝑃𝐾))
76fveq1d 6819 . . . . . 6 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘{𝑑}) = ((⊥𝑃𝐾)‘{𝑑}))
85, 7difeq12d 4075 . . . . 5 (𝑘 = 𝐾 → ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑})) = (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑})))
95, 8mpteq12dv 5176 . . . 4 (𝑘 = 𝐾 → (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑}))) = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
10 df-watsN 40008 . . . 4 WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑}))))
119, 10, 4mptfvmpt 7157 . . 3 (𝐾 ∈ V → (WAtoms‘𝐾) = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
122, 11eqtrid 2777 . 2 (𝐾 ∈ V → 𝑊 = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
131, 12syl 17 1 (𝐾𝐵𝑊 = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  Vcvv 3434  cdif 3897  {csn 4574  cmpt 5170  cfv 6477  Atomscatm 39281  𝑃cpolN 39920  WAtomscwpointsN 40004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-watsN 40008
This theorem is referenced by:  watvalN  40011
  Copyright terms: Public domain W3C validator