Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  watfvalN Structured version   Visualization version   GIF version

Theorem watfvalN 39319
Description: The W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
watomfval.a 𝐴 = (Atomsβ€˜πΎ)
watomfval.p 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
watomfval.w π‘Š = (WAtomsβ€˜πΎ)
Assertion
Ref Expression
watfvalN (𝐾 ∈ 𝐡 β†’ π‘Š = (𝑑 ∈ 𝐴 ↦ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑}))))
Distinct variable groups:   𝐴,𝑑   𝐾,𝑑
Allowed substitution hints:   𝐡(𝑑)   𝑃(𝑑)   π‘Š(𝑑)

Proof of Theorem watfvalN
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3485 . 2 (𝐾 ∈ 𝐡 β†’ 𝐾 ∈ V)
2 watomfval.w . . 3 π‘Š = (WAtomsβ€˜πΎ)
3 fveq2 6881 . . . . . 6 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = (Atomsβ€˜πΎ))
4 watomfval.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
53, 4eqtr4di 2782 . . . . 5 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = 𝐴)
6 fveq2 6881 . . . . . . 7 (π‘˜ = 𝐾 β†’ (βŠ₯π‘ƒβ€˜π‘˜) = (βŠ₯π‘ƒβ€˜πΎ))
76fveq1d 6883 . . . . . 6 (π‘˜ = 𝐾 β†’ ((βŠ₯π‘ƒβ€˜π‘˜)β€˜{𝑑}) = ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑}))
85, 7difeq12d 4115 . . . . 5 (π‘˜ = 𝐾 β†’ ((Atomsβ€˜π‘˜) βˆ– ((βŠ₯π‘ƒβ€˜π‘˜)β€˜{𝑑})) = (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑})))
95, 8mpteq12dv 5229 . . . 4 (π‘˜ = 𝐾 β†’ (𝑑 ∈ (Atomsβ€˜π‘˜) ↦ ((Atomsβ€˜π‘˜) βˆ– ((βŠ₯π‘ƒβ€˜π‘˜)β€˜{𝑑}))) = (𝑑 ∈ 𝐴 ↦ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑}))))
10 df-watsN 39317 . . . 4 WAtoms = (π‘˜ ∈ V ↦ (𝑑 ∈ (Atomsβ€˜π‘˜) ↦ ((Atomsβ€˜π‘˜) βˆ– ((βŠ₯π‘ƒβ€˜π‘˜)β€˜{𝑑}))))
119, 10, 4mptfvmpt 7221 . . 3 (𝐾 ∈ V β†’ (WAtomsβ€˜πΎ) = (𝑑 ∈ 𝐴 ↦ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑}))))
122, 11eqtrid 2776 . 2 (𝐾 ∈ V β†’ π‘Š = (𝑑 ∈ 𝐴 ↦ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑}))))
131, 12syl 17 1 (𝐾 ∈ 𝐡 β†’ π‘Š = (𝑑 ∈ 𝐴 ↦ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑}))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3466   βˆ– cdif 3937  {csn 4620   ↦ cmpt 5221  β€˜cfv 6533  Atomscatm 38589  βŠ₯𝑃cpolN 39229  WAtomscwpointsN 39313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-watsN 39317
This theorem is referenced by:  watvalN  39320
  Copyright terms: Public domain W3C validator