Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  watfvalN Structured version   Visualization version   GIF version

Theorem watfvalN 39981
Description: The W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
watomfval.a 𝐴 = (Atoms‘𝐾)
watomfval.p 𝑃 = (⊥𝑃𝐾)
watomfval.w 𝑊 = (WAtoms‘𝐾)
Assertion
Ref Expression
watfvalN (𝐾𝐵𝑊 = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
Distinct variable groups:   𝐴,𝑑   𝐾,𝑑
Allowed substitution hints:   𝐵(𝑑)   𝑃(𝑑)   𝑊(𝑑)

Proof of Theorem watfvalN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐾𝐵𝐾 ∈ V)
2 watomfval.w . . 3 𝑊 = (WAtoms‘𝐾)
3 fveq2 6860 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 watomfval.a . . . . . 6 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2783 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
6 fveq2 6860 . . . . . . 7 (𝑘 = 𝐾 → (⊥𝑃𝑘) = (⊥𝑃𝐾))
76fveq1d 6862 . . . . . 6 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘{𝑑}) = ((⊥𝑃𝐾)‘{𝑑}))
85, 7difeq12d 4092 . . . . 5 (𝑘 = 𝐾 → ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑})) = (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑})))
95, 8mpteq12dv 5196 . . . 4 (𝑘 = 𝐾 → (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑}))) = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
10 df-watsN 39979 . . . 4 WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑}))))
119, 10, 4mptfvmpt 7204 . . 3 (𝐾 ∈ V → (WAtoms‘𝐾) = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
122, 11eqtrid 2777 . 2 (𝐾 ∈ V → 𝑊 = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
131, 12syl 17 1 (𝐾𝐵𝑊 = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3913  {csn 4591  cmpt 5190  cfv 6513  Atomscatm 39251  𝑃cpolN 39891  WAtomscwpointsN 39975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-watsN 39979
This theorem is referenced by:  watvalN  39982
  Copyright terms: Public domain W3C validator