| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > watfvalN | Structured version Visualization version GIF version | ||
| Description: The W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| watomfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| watomfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| watomfval.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
| Ref | Expression |
|---|---|
| watfvalN | ⊢ (𝐾 ∈ 𝐵 → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) | |
| 2 | watomfval.w | . . 3 ⊢ 𝑊 = (WAtoms‘𝐾) | |
| 3 | fveq2 6860 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
| 4 | watomfval.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2783 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
| 6 | fveq2 6860 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (⊥𝑃‘𝑘) = (⊥𝑃‘𝐾)) | |
| 7 | 6 | fveq1d 6862 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ((⊥𝑃‘𝑘)‘{𝑑}) = ((⊥𝑃‘𝐾)‘{𝑑})) |
| 8 | 5, 7 | difeq12d 4092 | . . . . 5 ⊢ (𝑘 = 𝐾 → ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑})) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) |
| 9 | 5, 8 | mpteq12dv 5196 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑}))) = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| 10 | df-watsN 39979 | . . . 4 ⊢ WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑})))) | |
| 11 | 9, 10, 4 | mptfvmpt 7204 | . . 3 ⊢ (𝐾 ∈ V → (WAtoms‘𝐾) = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| 12 | 2, 11 | eqtrid 2777 | . 2 ⊢ (𝐾 ∈ V → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| 13 | 1, 12 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐵 → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3913 {csn 4591 ↦ cmpt 5190 ‘cfv 6513 Atomscatm 39251 ⊥𝑃cpolN 39891 WAtomscwpointsN 39975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-watsN 39979 |
| This theorem is referenced by: watvalN 39982 |
| Copyright terms: Public domain | W3C validator |