| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > watfvalN | Structured version Visualization version GIF version | ||
| Description: The W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| watomfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| watomfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| watomfval.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
| Ref | Expression |
|---|---|
| watfvalN | ⊢ (𝐾 ∈ 𝐵 → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . 2 ⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) | |
| 2 | watomfval.w | . . 3 ⊢ 𝑊 = (WAtoms‘𝐾) | |
| 3 | fveq2 6887 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
| 4 | watomfval.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2787 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
| 6 | fveq2 6887 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (⊥𝑃‘𝑘) = (⊥𝑃‘𝐾)) | |
| 7 | 6 | fveq1d 6889 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ((⊥𝑃‘𝑘)‘{𝑑}) = ((⊥𝑃‘𝐾)‘{𝑑})) |
| 8 | 5, 7 | difeq12d 4109 | . . . . 5 ⊢ (𝑘 = 𝐾 → ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑})) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) |
| 9 | 5, 8 | mpteq12dv 5215 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑}))) = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| 10 | df-watsN 39933 | . . . 4 ⊢ WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃‘𝑘)‘{𝑑})))) | |
| 11 | 9, 10, 4 | mptfvmpt 7231 | . . 3 ⊢ (𝐾 ∈ V → (WAtoms‘𝐾) = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| 12 | 2, 11 | eqtrid 2781 | . 2 ⊢ (𝐾 ∈ V → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| 13 | 1, 12 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐵 → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∖ cdif 3930 {csn 4608 ↦ cmpt 5207 ‘cfv 6542 Atomscatm 39205 ⊥𝑃cpolN 39845 WAtomscwpointsN 39929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-watsN 39933 |
| This theorem is referenced by: watvalN 39936 |
| Copyright terms: Public domain | W3C validator |